[1]

Anjum MN, Joyia FA, Mustafa G, Ishtiaq R, Ali MA, et al. 2018. Direct in vitro regeneration and transient gus assay: towards stable genetic transformation in Trifolium alexandrinum L. Yuzuncu Yil Universitesi Journal of Agricultural Sciences 28:315−20

[2]

Tyagi VC, Wasnik VK, Choudhary M, Halli HM, Chander S. 2018. Weed management in Berseem (Trifolium alexandrium L.): a review. International Journal of Current Microbiology and Applied Sciences 7(05):1929−38

doi: 10.20546/ijcmas.2018.705.226
[3]

Abogadallah GM, Quick WP. 2010. Fast versatile regeneration of Trifolium alexandrinum L. Plant Cell, Tissue and Organ Culture 100:39−48

doi: 10.1007/s11240-009-9614-y
[4]

Singh T, Radhakrishna A, Nayak DS, Malaviya DR. 2019. Genetic improvement of berseem (Trifolium alexandrinum) in India: current status and prospects. International Journal of Current Microbiology and Applied Sciences 8(1):3028−36

doi: 10.20546/ijcmas.2019.801.322
[5]

Moghaieb REA, Abdelazim AMA, Youssef SS, Ibrahim SAM, Hussein BA. 2014. Regeneration and transformation efficiencies among five Egyptian clover cultivars (Trifolium alexandrinum). International Journal of Advanced Research 2:227−33

[6]

Malik P, Prajapati M, Bhoria S, Jaiwal R, Jaiwal PK, et al. 2023. Efficient in vitro direct plant regeneration from mature cotyledon explants of berseem (Egyptian Clover, Trifolium alexandrinum L.). Annals of Biology 39(2):150−56

[7]

Malik P, Prajapati M, Chaudhary D, Prasad M, Jaiwal R, et al. 2023. Production of bovine rotavirus VP6 Subunit vaccine in a transgenic fodder crop, Egyptian Clover (Berseem, Trifolium alexandrinum) that elicits immune responses in rabbit. Molecular Biotechnology 65:1432−43

doi: 10.1007/s12033-022-00648-0
[8]

Jiang Q, Zhang JY, Guo X, Bedair M, Sumner L, et al. 2010. Improvement of drought tolerance in white clover (Trifolium repens) by transgenic expression of a transcription factor gene WXP1. Functional Plant Biology 37(2):157−65

doi: 10.1071/FP09177
[9]

Richardson KA, Maher DA, Jones CS, Bryan G. 2013. Genetic transformation of western clover (Trifolium occidentale D. E. Coombe.) as a model for functional genomics and transgene introgression in clonal pasture legume species. Plant Methods 9:25

doi: 10.1186/1746-4811-9-25
[10]

Khan MR, Tabe LM, Heath LC, Spencer D, Higgins TJV. 1994. Agrobacterium-mediated transformation of subterranean clover (Trifolium subterraneum L.). Plant Physiology 105(1):81−8

doi: 10.1104/pp.105.1.81
[11]

Rojo FP, Seth S, Erskine W, Kaur P. 2021. An improved protocol for Agrobacterium-mediated transformation in subterranean clover (Trifolium subterraneum L.). International Journal of Molecular Sciences 22(8):4181

doi: 10.3390/ijms22084181
[12]

Hu HH, Jing CQ, Liu R, Li WD, Feng HG. 2015. Cloning and transformation analysis of isoflavone synthase gene into Minshan Trifolium pratense. Genetics and Molecular Research 14(3):9291−97

doi: 10.4238/2015.August.10.9
[13]

Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15(3):473−97

doi: 10.1111/j.1399-3054.1962.tb08052.x
[14]

Gamborg OL, Miller RA, Ojima K. 1968. Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research 50(1):151−58

doi: 10.1016/0014-4827(68)90403-5
[15]

Jefferson RA. 1987. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Molecular Biology Reporter 5:387−405

doi: 10.1007/BF02667740
[16]

Sadhu SK, Jogam P, Gande K, Banoth R, Penna S, et al. 2022. Optimization of different factors for an Agrobacterium-mediated genetic transformation system using embryo axis explants of chickpea (Cicer arietinum L.). Journal of Plant Biotechnology 49(1):61−73

doi: 10.5010/JPB.2022.49.1.061
[17]

Indurker S, Misra HS, Eapen S. 2010. Agrobacterium-mediated transformation in chickpea (Cicer arietinum L.) with an insecticidal protein gene: optimisation of different factors. Physiology and Molecular Biology of Plants 16:273−84

doi: 10.1007/s12298-010-0030-x
[18]

Schroeder HE, Schotz AH, Wardley-Richardson T, Spencer D, Higgins TJV. 1993. Transformation and regeneration of two cultivars of pea (Pisum sativum L.). Plant Physiology 101(3):751−57

doi: 10.1104/pp.101.3.751
[19]

Kar S, Johnson TM, Nayak P, Sen SK. 1996. Efficient transgenic plant regeneration through Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.). Plant Cell Reports 16:32−37

doi: 10.1007/BF01275444
[20]

Choudhury A, Rajam MV. 2021. Genetic transformation of legumes: an update. Plant Cell Reports 40:1813−30

doi: 10.1007/s00299-021-02749-7
[21]

Fullner KJ, Lara JC, Nester EW. 1996. Pilus assembly by Agrobacterium T-DNA transfer genes. Science 273(5278):1107−09

doi: 10.1126/science.273.5278.1107
[22]

Fullner KJ, Nester EW. 1996. Temperature affects the T-DNA transfer machinery of Agrobacterium tumefaciens. Journal of Bacteriology 178(6):1498−504

doi: 10.1128/jb.178.6.1498-1504.1996
[23]

Rai GK, Rai NP, Kumar S, Yadav A, Rathaur S, et al. 2012. Effects of explant age, germination medium, pre-culture parameters, inoculation medium, pH, washing medium, and selection regime on Agrobacterium-mediated transformation of tomato. In Vitro Cellular & Developmental Biology - Plant 48:565−78

doi: 10.1007/s11627-012-9442-3
[24]

Ogaki M, Furuichi Y, Kuroda K, Chin DP, Ogawa Y, et al. 2008. Importance of co-cultivation medium pH for successful Agrobacterium-mediated transformation of Lilium × formolongi. Plant Cell Reports 27:699−705

doi: 10.1007/s00299-007-0481-x
[25]

Qi T, Tang T, Zhou Q, Yang W, Hassan MJ, et al. 2023. Optimization of protocols for the induction of callus and plant regeneration in white clover (Trifolium repens L.). International Journal of Molecular Sciences 24:11260

doi: 10.3390/ijms241411260
[26]

Tanaka N, Fujikawa Y, Aly MAM, Saneoka H, Fujita K, et al. 2001. Proliferation and rol gene expression in hairy root lines of Egyptian clover. Plant Cell, Tissue and Organ Culture 66:175−82

doi: 10.1023/A:1010648124872
[27]

Jia T, Tang T, Cheng B, Li Z, Peng Y. 2023. Development of two protocols for Agrobacterium-mediated transformation of white clover (Trifolium repens) via the callus system. 3 Biotech 13(5):150

doi: 10.1007/s13205-023-03591-2
[28]

Sainger M, Chaudhary D, Dahiya S, Jaiwal R, Jaiwal PK. 2015. Development of an efficient in vitro plant regeneration system amenable to Agrobacterium-mediated transformation of a recalcitrant grain legume blackgram (Vigna mungo L. Hepper). Physiology and Molecular Biology of Plants 21:505−17

doi: 10.1007/s12298-015-0315-1
[29]

Kavitah G, Taghipour F, Huyop F. 2010. Investigation of factors in optimizing Agrobacterium-mediated gene transfer in Citrullus lanatus cv. Round Dragon. Journal of Biological Sciences 10(3):209−16

doi: 10.3923/jbs.2010.209.216
[30]

Aftabi M, Teressa Negawo A, Hassan F. 2018. Improved protocol for Agrobacterium-mediated transformation of pea (Pisum sativum). Molecular Biology 7:1

doi: 10.4172/2168-9547.1000202
[31]

Kumar A, Sainger M, Jaiwal R, Chaudhary D, Jaiwal PK. 2021. Tissue culture- and selection-independent Agrobacterium tumefaciens-mediated transformation of a recalcitrant grain legume, Cowpea (Vigna unguiculata L. Walp). Molecular Biotechnology 63(8):710−18

doi: 10.1007/s12033-021-00333-8
[32]

Yadav M, Chaudhary D, Sainger M, and Jaiwal PK. 2010. Agrobacterium tumefaciens-mediated genetic transformation of sesame (Sesamum indicum L.). Plant Cell, Tissue and Organ Culture (PCTOC) 103:377−86

doi: 10.1007/s11240-010-9791-8
[33]

Yadav SK, Katikala S, Yellisetty V, Kannepalle A, Narayana JL, et al. 2012. Optimization of Agrobacterium mediated genetic transformation of cotyledonary node explants of Vigna radiata. Springer Plus 1:59

doi: 10.1186/2193-1801-1-59
[34]

Yadav R, Mehrotra M, Singh AK, Niranjan A, Singh R, et al. 2017. Improvement in Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) by the inhibition of polyphenolics released during wounding of cotyledonary node explants. Protoplasma 254:253−69

doi: 10.1007/s00709-015-0940-0
[35]

Li HY, Zhu YM, Chen Q, Conner RL, Ding XD, et al. 2004. Production of transgenic soybean plants with two anti-fungal protein genes via Agrobacterium and particle bombardment. Biologia Plantarum 48:367−74

doi: 10.1023/B:BIOP.0000041088.62614.76
[36]

Guo M, Zhang YL, Meng ZJ, Jiang J. 2012. Optimization of factors affecting Agrobacterium-mediated transformation of Micro-Tom tomatoes. Genetics and Molecular Research 11(1):661−71

doi: 10.4238/2012.March.16.4
[37]

Ding YL, Aldao-Humble G, Ludlow E, Drayton M, Lin YH, et al. 2003. Efficient plant regeneration and Agrobacterium-mediated transformation in Medicago and Trifolium species. Plant Science 165(6):1419−27

doi: 10.1016/j.plantsci.2003.08.013
[38]

Teixeira da Silva JA, Dobránszki J. 2014. Sonication and ultrasound: impact on plant growth and development. Plant Cell, Tissue and Organ Culture (PCTOC) 117:131−43

doi: 10.1007/s11240-014-0429-0
[39]

Bett B, Gollasch S, Moore A, Harding R, Higgins TJV. 2019. An improved transformation system for cowpea (Vigna unguiculata L. Walp) via sonication and a kanamycin-geneticin selection regime. Frontiers in Plant Science 10:219

doi: 10.3389/fpls.2019.00219
[40]

Che P, Chang S, Simon MK, Zhang Z, Shaharyar A, et al. 2021. Developing a rapid and highly efficient cowpea regeneration, transformation and genome editing system using embryonic axis explants. The Plant Journal 106(3):817−30

doi: 10.1111/tpj.15202
[41]

Liu SJ, Wei ZM, Huang JQ. 2008. The effect of co-cultivation and selection parameters on Agrobacterium-mediated transformation of Chinese soybean varieties. Plant Cell Reports 27:489−98

doi: 10.1007/s00299-007-0475-8