[1] |
Kaushal P, Kumar V, Sharma HK. 2015. Utilization of taro (Colocasia esculenta): a review. Journal of Food Science and Technology 52:27−40 doi: 10.1007/s13197-013-0933-y |
[2] |
Jiang S, Cheng Y, Zheng Z, Pan L. 2012. Analysis and evaluation of nutritional components of red bud taro (Colocasia esulenla L. Schott). Food Science 33:269−72 |
[3] |
Li J, Luo J, Yang P. 2021. Research advances of applying virus-induced gene silencing in vegetables. Scientia Agricultura Sinica 54:2154−66 doi: 10.3864/j.issn.0578-1752.2021.10.011 |
[4] |
Rössner C, Lotz D, Becker A. 2022. VIGS goes viral: how VIGS transforms our understanding of plant science. Annual Review of Plant Biology 73:703−28 doi: 10.1146/annurev-arplant-102820-020542 |
[5] |
Zulfiqar S, Farooq MA, Zhao T, Wang P, Tabusam J, et al. 2023. Virus-induced gene silencing (VIGS): A powerful tool for crop improvement and its advancement towards epigenetics. International Journal of Molecular Sciences 24(6):5608 doi: 10.3390/ijms24065608 |
[6] |
Burch-Smith TM, Anderson JC, Martin GB, Dinesh-Kumar SP. 2004. Applications and advantages of virus-induced gene silencing for gene function studies in plants. The Plant Journal 39(5):734−46 doi: 10.1111/j.1365-313X.2004.02158.x |
[7] |
Senthil-Kumar M, Mysore KS. 2011. Virus-induced gene silencing can persist for more than 2 years and also be transmitted to progeny seedlings in Nicotiana benthamiana and tomato. Plant Biotechnology Journal 9:797−806 doi: 10.1111/j.1467-7652.2011.00589.x |
[8] |
Li J, Seng S, Li D, Zhang F, Liu Y, et al. 2021. Antagonism between abscisic acid and gibberellin regulates starch synthesis and corm development in Gladiolus hybridus. Horticulture Research 8:155 doi: 10.1038/s41438-021-00589-w |
[9] |
Cubas P, Lauter N, Doebley J, Coen E. 1999. The TCP domain: a motif found in proteins regulating plant growth and development. The Plant Journal 18:215−22 doi: 10.1046/j.1365-313X.1999.00444.x |
[10] |
Kosugi S, Ohashi Y. 2002. DNA binding and dimerization specificity and potential targets for the TCP protein family. The Plant Journal 30:337−48 doi: 10.1046/j.1365-313X.2002.01294.x |
[11] |
Martín-Trillo M, Cubas P. 2010. TCP genes: a family snapshot ten years later. Trends in Plant Science 15:31−39 doi: 10.1016/j.tplants.2009.11.003 |
[12] |
González-Grandío E, Cubas P. 2016. TCP transcription factors: evolution, structure, and biochemical function. In Plant Transcription Factors, ed. Gonzalez DH. London, UK: Academic Press, Elsevier. pp. 139−51. https://doi.org/10.1016/b978-0-12-800854-6.00009-9 |
[13] |
Lucero LE, Manavella PA, Gras DE, Ariel FD, Gonzalez DH. 2017. Class I and class II TCP transcription factors modulate SOC1-dependent flowering at multiple levels. Molecular Plant 10:1571−74 doi: 10.1016/j.molp.2017.09.001 |
[14] |
Saripalli G, Gupta PK. 2015. AGPase: its role in crop productivity with emphasis on heat tolerance in cereals. Theoretical And Applied Genetics 128:1893−916 doi: 10.1007/s00122-015-2565-2 |
[15] |
Chen C, Wu Y, Li J, Wang X, Zeng Z, et al. 2023. TBtools-II: A "One for All, All for One" bioinformatics platform for biological big-data mining. Molecular Plant 16:1733−42 doi: 10.1016/j.molp.2023.09.010 |
[16] |
Zhu Q, Li B, Liu X, Shan N, Sun J, et al. 2022. Uncovering the mechanism preliminarily of formation and development of taro corm in vitro by morphological physiology and transcriptomic analysis. Scientia Horticulturae 291:110575 doi: 10.1016/j.scienta.2021.110575 |
[17] |
Weigel D, Glazebrook J. 2006. Transformation of Agrobacterium using the freeze-thaw method. Cold Spring Harb Protocols 7:pdb.prot4666 doi: 10.1101/pdb.prot4666 |
[18] |
Garg A, Sharma S, Srivastava P, Ghosh S. 2021. Application of virus-induced gene silencing in Andrographis paniculata, an economically important medicinal plant. Protoplasma 258:1155−62 doi: 10.1007/s00709-021-01631-3 |
[19] |
Xiao Y, Kang B, Li M, Xiao L, Xiao H, et al. 2020. Transcription of lncRNA ACoS-AS1 is essential to trans-splicing between SlPsy1 and ACoS-AS1 that causes yellow fruit in tomato. RNA Biology 17:596−607 doi: 10.1080/15476286.2020.1721095 |
[20] |
Gao JF. 2006. Experimental guidance in plant physiology. Beijing: Higher Education Press. |
[21] |
Liu Z, Duan Z, Peng T, Wang T, Wang J. 2023. Establishment and optimization of virus-induced gene silencing system in bougainvillea peruviana ‘Thimma’. Biotechnology Bulletin 39:123−30 doi: 10.13560/j.cnki.biotech.bull.1985.2022-1266 |
[22] |
Ajayo BS, Li Y, Wang Y, Dai C, Gao L, et al. 2022. The novel ZmTCP7 transcription factor targets AGPase-encoding gene ZmBt2 to regulate storage starch accumulation in maize. Frontiers in Plant Science 13:943050 doi: 10.3389/fpls.2022.943050 |
[23] |
Yin J, Jiang L, Wang L, Han X, Guo W, et al. 2021. A high-quality genome of taro (Colocasia esculenta (L.) Schott), one of the world's oldest crops . Molecular Ecology Resources 21:68−77 doi: 10.1111/1755-0998.13239 |
[24] |
Sun C, Deng L, Du M, Zhao J, Chen Q, et al. 2020. A transcriptional network promotes anthocyanin biosynthesis in tomato flesh. Molecular Plant 13:42−58 doi: 10.1016/j.molp.2019.10.010 |
[25] |
Yan S, Chen N, Huang Z, Li D, Zhi J, et al. 2020. Anthocyanin Fruit encodes an R2R3‐MYB transcription factor, SlAN2‐like, activating the transcription of SlMYBATV to fine-tune anthocyanin content in tomato fruit. New Phytologist 225:2048−63 doi: 10.1111/nph.16272 |
[26] |
Li R, Wang Y, Hu F, Xia J, Wang T, et al. 2018. VIGS transformation system construction and identification of gene PDS in mulberry. Journal of Southern Agriculture 49:1432−38 doi: 10.3969/j.issn.2095-1191.2018.07.26 |
[27] |
Manning K, Tör M, Poole M, Hong Y, Thompson AJ, et al. 2006. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nature Genetics 38:948−52 doi: 10.1038/ng1841 |
[28] |
Golenberg EM, Sather D, Hancock LC, Buckley KJ, Villafranco NM, et al. 2009. Development of a gene silencing DNA vector derived from a broad host range geminivirus. Plant Methods 5:9 doi: 10.1186/1746-4811-5-9 |
[29] |
Pandey P, Choudhury NR, Mukherjee SK. 2009. A geminiviral amplicon (VA) derived from Tomato leaf curl virus (ToLCV) can replicate in a wide variety of plant species and also acts as a VIGS vector. Virology Journal 6:152 doi: 10.1186/1743-422X-6-152 |
[30] |
Cai X, Wang C, Xu Y, Xu Q, Zheng Z, et al. 2007. Efficient gene silencing induction in tomato by a viral satellite DNA vector. Virus Research 125:169−75 doi: 10.1016/j.virusres.2006.12.016 |
[31] |
Huang C, Xie Y, Zhou X. 2009. Efficient virus-induced gene silencing in plants using a modified geminivirus DNA1 component. Plant Biotechnology Journal 7:254−65 doi: 10.1111/j.1467-7652.2008.00395.x |
[32] |
Tzean Y, Lee MC, Jan HH, Chiu YS, Tu TC, et al. 2019. Cucumber mosaic virus-induced gene silencing in banana. Scientific Reports 9:11553 doi: 10.1038/s41598-019-47962-3 |
[33] |
Aragonés V, Aliaga F, Pasin F, Daròs JA. 2022. Simplifying plant gene silencing and genome editing logistics by a one-Agrobacterium system for simultaneous delivery of multipartite virus vectors. Biotechnology Journal 17:2100504 doi: 10.1002/biot.202100504 |
[34] |
Hua ZY. 2010. Research on regulation and effects of CHS gene from lily on pigmentation of flowers. Master's thesis. Northwest A&F University, Yangling. www.dissertationtopic.net/doc/685422 |
[35] |
Tai DQ. 2015. Establishment of VIGS protocol and functional analysis of McMYB10, McMYB16 in Malus crabapple. Thesis. Shanxi Agricultural University, Taigu, China. |
[36] |
Xu H, Xu L, Yang P, Cao Y, Tang Y, et al. 2018. Tobacco rattle virus-induced PHYTOENE DESATURASE (PDS) and Mg-chelatase H subunit (ChlH) gene silencing in Solanum pseudocapsicum L. PeerJ 6:e4424 doi: 10.7717/peerj.4424 |
[37] |
Zhou J, Hunter DA, Lewis DH, McManus MT, Zhang H. 2018. Insights into carotenoid accumulation using VIGS to block different steps of carotenoid biosynthesis in petals of California poppy. Plant Cell Reports 37:1311−23 doi: 10.1007/s00299-018-2314-5 |
[38] |
Zhou P, Peng J, Zeng M, Wu L, Fan Y, et al. 2021. Virus-induced gene silencing (VIGS) in Chinese narcissus and its use in functional analysis of NtMYB3. Horticultural Plant Journal 7:565−72 doi: 10.1016/j.hpj.2021.04.009 |