[1] |
Sun M, Xu X, Wang C, Bai Y, Fu C, et al. 2020. Environmental burdens of the comprehensive utilization of straw: wheat straw utilization from a life-cycle perspective. Journal of Cleaner Production 259:120702 doi: 10.1016/j.jclepro.2020.120702 |
[2] |
Wang B, Li M, Wen X, Yang Y, Zhu J, et al. 2020. Distribution characteristics, potential contribution, and management strategy of crop straw and livestock-poultry manure in multi-ethnic regions of China: a critical evaluation. Journal of Cleaner Production 274:123174 doi: 10.1016/j.jclepro.2020.123174 |
[3] |
Jin Q, Ma X, Wang G, Yang X, Guo F. 2018. Dynamics of major air pollutants from crop residue burning in mainland China, 2000–2014. Journal of Environmental Sciences 70:190−205 doi: 10.1016/j.jes.2017.11.024 |
[4] |
Kung CC, Kong F, Choi Y. 2015. Pyrolysis and biochar potential using crop residues and agricultural wastes in China. Ecological Indicators 51:139−45 doi: 10.1016/j.ecolind.2014.06.043 |
[5] |
Guo W, Yu H, Yu C, Liu J. 2017. Research status and prospect of straw returning technology. Heilongjiang Agricultural Sciences 2017(7):109−11 |
[6] |
Sun Z, Yu Z, Wang Y. 2019. Experiment of tomato planting in solar greenhouse of Liaozhong district, Liaoning province. Agricultural Engineering Technology 39:22−24 |
[7] |
Han X, Chang R, Du P, Li J, Li Y. 2015. Straw coefficient and properties of different vegetable wastes. Journal of Agricultural Resources and Environment 32:377−82 |
[8] |
Mo S, Zhang Z, Shang Q, Wu F. 2008. Analysis on chemical components of vegetable stump. China Vegetables 2008(12):21−23 doi: 10.19928/j.cnki.1000-6346.2008.12.009 |
[9] |
Viturtia AM, Mata-Alvarez J, Cecchi F, Fazzini G. 1989. Two-phase anaerobic digestion of a mixture of fruit and vegetable wastes. Biological Wastes 29:189−99 doi: 10.1016/0269-7483(89)90130-4 |
[10] |
Guo J, Chen J. 2022. The impact of heavy rainfall variability on fertilizer application rates: evidence from maize farmers in China. International Journal of Environmental Research and Public Health 19:15906 doi: 10.3390/ijerph192315906 |
[11] |
Duanyuan H, Zhou T, He Z, Peng Y, Lei J, et al. 2023. Effects of straw mulching on soil properties and enzyme activities of Camellia oleifera–Cassia intercropping agroforestry systems. Plants 12:3046 doi: 10.3390/plants12173046 |
[12] |
Sharma S, Singh P. 2023. Tillage intensity and straw retention impacts on soil organic carbon, phosphorus and biological pools in soil aggregates under rice-wheat cropping system in Punjab, north-western India. European Journal of Agronomy 149:126913 doi: 10.1016/j.eja.2023.126913 |
[13] |
Zhang X, Song Y, Yang X, Hu C, Wang K. 2023. Regulation of soil enzyme activity and bacterial communities by food waste compost application during field tobacco cultivation cycle. Applied Soil Ecology 192:105016 doi: 10.1016/j.apsoil.2023.105016 |
[14] |
Li X, Li B, Mo T, Wang C, Wan Y, et al. 2021. Effects of long-term straw returning on distribution of aggregates and nitrogen, phosphorus, and potassium in paddy. Chinese Journal of Applied Eco logy 32:3257−66 doi: 10.13287/j.1001-9332.202109.022 |
[15] |
Yang S, Wang Y, Liu R, Xing L, Yang Z. 2018. Improved crop yield and reduced nitrate nitrogen leaching with straw return in a rice-wheat rotation of Ningxia irrigation district. Scientific Reports 8:9458 doi: 10.1038/s41598-018-27776-5 |
[16] |
Nafi E, Webber H, Danso I, Naab JB, Frei M, et al. 2019. Soil tillage, residue management and site interactions affecting nitrogen use efficiency in maize and cotton in the Sudan Savanna of Africa. Field Crops Research 244:107629 doi: 10.1016/j.fcr.2019.107629 |
[17] |
Agneessens L, De Waele J, De Neve S. 2014. Review of alternative management options of vegetable crop residues to reduce nitrate leaching in intensive vegetable rotations. Agronomy 4:529−55 doi: 10.3390/agronomy4040529 |
[18] |
Zetola NM, Modongo C, Matsiri O, Tamuhla T, Mbongwe B, et al. 2017. Diagnosis of pulmonary tuberculosis and assessment of treatment response through analyses of volatile compound patterns in exhaled breath samples. Journal of Infection 74:367−76 doi: 10.1016/j.jinf.2016.12.006 |
[19] |
Radjacommare R, Ramanathan A, Kandan A, Harish S, Thambidurai G, et al. 2005. PGPR mediates induction of pathogenesis-related (PR) proteins against the infection of blast pathogen in resistant and susceptible ragi [Eleusine coracana (L.) Gaertner] cultivars. Plant and Soil 266:165−76 doi: 10.1007/s11104-005-0996-2 |
[20] |
Shafi J, Tian H, Ji M. 2017. Bacillus species as versatile weapons for plant pathogens: a review. Biotechnology & Biotechnological Equipment 31:446−59 doi: 10.1080/13102818.2017.1286950 |
[21] |
Cui X, Cao X, Xue W, Xu L, Cui Z, et al. 2023. Integrative effects of microbial inoculation and amendments on improved crop safety in industrial soils co-contaminated with organic and inorganic pollutants. Science of The Total Environment 873:162202 doi: 10.1016/j.scitotenv.2023.162202 |
[22] |
Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J. 2009. Exploiting plant-microbe partnerships to improve biomass production and remediation. Trends in Biotechnology 27:591−98 doi: 10.1016/j.tibtech.2009.07.006 |
[23] |
Zhao W, Guo Q, Li S, Wang P, Dong L, et al. 2021. Effects of Bacillus subtilis NCD-2 and broccoli residues return on potato Verticillium wilt and soil fungal community structure. Biological Control 159:104628 doi: 10.1016/j.biocontrol.2021.104628 |
[24] |
Qin S, Jiao K, Lyu D, Shi L, Liu L. 2015. Effects of maize residue and cellulose-decomposing bacteria inocula on soil microbial community, functional diversity, organic fractions, and growth of Malus hupehensis Rehd. Archives of Agronomy and Soil Science 61:173−84 doi: 10.1080/03650340.2014.928927 |
[25] |
Wang X, Huang J. 2015. Principles and techniques of plant physiological biochemical experiment. Beijing: Higher Education Press. 306 pp. |
[26] |
Huo H. 2012. The research of lycopene extraction method at determination. Guangdong Chemical Industry 39:164−165,167 doi: 10.3969/j.issn.1007-1865.2012.18.090 |
[27] |
Loveland P. 2011. Soil chemical methods – Australasia. Soil Use and Management 27:131−31 doi: 10.1111/j.1475-2743.2010.00322.x |
[28] |
Lu R. 2000. Analysis method of soil and agricultural chemistry. Beijing: China Agricultural Science and Technology Press |
[29] |
Guan SY. 1986. Soil enzymes and research methods. Agricultural Publishing Press |
[30] |
Xie K, Sun M, Shi A, Di Q, Chen R, et al. 2022. The application of tomato plant residue compost and plant growth-promoting rhizobacteria improves soil quality and enhances the ginger field soil bacterial community. Agronomy 12:1741 doi: 10.3390/agronomy12081741 |
[31] |
Li F, Zhou F, Zhang G, Zhou H, Wu X, et al. 2022. Impacts of growth-promoting bacteria on root bacterial community of tomato in substrate culture. Microbiology China 49:583−97 doi: 10.13344/j.microbiol.china.210788 |
[32] |
Lee J, Im WT, Kim MK, Yang DC. 2006. Lysobacter koreensis sp. nov., isolated from a ginseng field. International Journal of Systematic and Evolutionary Microbiology 56:231−35 doi: 10.1099/ijs.0.63955-0 |
[33] |
Postma J, Schilder MT, Bloem J, van Leeuwen-Haagsma WK. 2008. Soil suppressiveness and functional diversity of the soil microflora in organic farming systems. Soil Biology and Biochemistry 40:2394−406 doi: 10.1016/j.soilbio.2008.05.023 |
[34] |
Kong T, Li B, Ke Y, Zhu H, Ma Y, et al. 2017. Effect of vegetables waste compost on protected vegetable yield and soil microbial property. Soils and Fertilizers Sciences in China 2017(5):157−60 doi: 10.11838/sfsc.20170527 |
[35] |
Andrade LF, de Souza GLO, Nietsche S, Xavier AA, Costa MR, et al. 2014. Analysis of the abilities of endophytic bacteria associated with banana tree roots to promote plant growth. Journal of Microbiology 52:27−34 doi: 10.1007/s12275-014-3019-2 |
[36] |
Tosti G, Benincasa P, Farneselli M, Pace R, Tei F, et al. 2012. Green manuring effect of pure and mixed barley – hairy vetch winter cover crops on maize and processing tomato N nutrition. European Journal of Agronomy 43:136−46 doi: 10.1016/j.eja.2012.06.004 |
[37] |
Li J, Wu R, Shang J, Zhang J, Du H. 2018. Effects of combined application of biochar and nitrogen fertilizer on photosynthetic pigment and protective enzyme of millet. Journal of Shanxi Agricultural Sciences 46:383−86 doi: 10.3969/j.issn.1002-2481.2018.03.18 |
[38] |
Zornoza R, Guerrero C, Mataix-Solera J, Arcenegui V, García-Orenes F, et al. 2006. Assessing air-drying and rewetting pre-treatment effect on some soil enzyme activities under Mediterranean conditions. Soil Biology and Biochemistry 38:2125−34 doi: 10.1016/j.soilbio.2006.01.010 |
[39] |
Jiang L, Zuo Q, Ma J, Zhang Z. 2021. Evaluation and prediction of the level of high-quality development: a case study of the Yellow River Basin, China. Ecological Indicators 129:107994 doi: 10.1016/j.ecolind.2021.107994 |
[40] |
Zhang E, Tan F, Wang Y, Zhang S, Duan Y, et al. 2015. Effects of NPK fertilizers and organic manure on nutritional quality, yield of tomato and soil enzyme activities. Acta Horticulturea Sinica 42:2059−67 doi: 10.16420/j.issn.0513-353x.2015-0341 |
[41] |
Asghar W, Kataoka R. 2021. Effect of co-application of Trichoderma spp. with organic composts on plant growth enhancement, soil enzymes and fungal community in soil. Archives of Microbiology 203:4281−91 doi: 10.1007/s00203-021-02413-4 |
[42] |
Ning C, Wang J, Cai K. 2016. The effects of organic fertilizers on soil fertility and soil environmental quality: a review. Ecology Environment Science 25:175−81 doi: 10.16258/j.cnki.1674-5906.2016.01.026 |
[43] |
Olasupo IO, Liang Q, Zhang C, Islam MS, Li Y, et al. 2021. Agronomic biofortification of cayenne pepper cultivars with plant growth-promoting rhizobacteria and chili residue in a Chinese solar greenhouse. Microorganisms 9:2398 doi: 10.3390/microorganisms9112398 |
[44] |
Lauber CL, Hamady M, Knight R, Fierer N. 2009. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology 75:5111−20 doi: 10.1128/AEM.00335-09 |
[45] |
Naz M, Dai Z, Hussain S, Tariq M, Danish S, et al. 2022. The soil pH and heavy metals revealed their impact on soil microbial community. Journal of Environmental Management 321:115770 doi: 10.1016/j.jenvman.2022.115770 |
[46] |
Wei X, Li Y, Fan X, He C, Yan Y, et al. 2021. Techno-economic feasibility of in situ vegetable residue return in the Chinese solar greenhouse. Agronomy 11:1828 doi: 10.3390/agronomy11091828 |
[47] |
El-Chakhtoura J, Prest E, Saikaly P, van Loosdrecht M, Hammes F, et al. 2015. Dynamics of bacterial communities before and after distribution in a full-scale drinking water network. Water Research 74:180−90 doi: 10.1016/j.watres.2015.02.015 |
[48] |
Ouyang Z, Wang Y, Gao Y, Jiang G, Fang Y. 2010. Identification of Sphingomomas yanoikuyae strain with potency to degrade pesticides. Journal of Anhui Agricultural Sciences 38:9939−41 doi: 10.13989/j.cnki.0517-6611.2010.19.066 |
[49] |
Ouyang Z, Wang Y, Li X, Gao Y, Jiang G, et al. 2008. Test of pesticide degradability by sphingomonas yanoikuyae XJ stain. Journal of South China Agricultural University 29:47−49 |
[50] |
Cai D, Li J, Li H, Hu X, Zhang J. 2018. Effects of nutrient solution supply amount on yield, quality and volatile matter of tomato. Journal of Applied Ecology 29:921−30 doi: 10.13287/j.1001-9332.201803.026 |
[51] |
Adeleke BS, Babalola OO. 2021. Pharmacological potential of fungal endophytes associated with medicinal plants: a review. Journal of Fungi 7:147 doi: 10.3390/jof7020147 |
[52] |
Liu G, Huang J, Yang R, Ren X, Wang J. 2019. Comparative analysis of main quality traits and physiological indexes of cherry tomato. Chinese Jounal of Trropical Agriculture 39:61−65 |
[53] |
Yu D, Tan S. 2018. Analysis of nutritional components of different tomato varieties. Modern Food 2018(15):130−32 doi: 10.16736/j.cnki.cn41-1434/ts.2018.15.040 |
[54] |
Wang J, Wang S, Chu P, Ma X, Tang Z. 2021. Investigating into anti-cancer potential of lycopene: molecular targets. Biomedicine & Pharmacotherapy 138:111546 doi: 10.1016/j.biopha.2021.111546 |
[55] |
Chiquito-Contreras RG, Murillo-Amador B, Chiquito-Contreras CJ, Márquez-Martínez JC, Córdoba-Matson MV, et al. 2017. Effect of Pseudomonas putida and inorganic fertilizer on growth and productivity of habanero pepper (Capsicum Chinense Jacq.) in greenhouse. Journal of Plant Nutrition 40:2595−601 doi: 10.1080/01904167.2017.1381119 |
[56] |
Han L, Li Y, Yu X, He C. 2016. Effects of vegetable residue compost returning to soil on soil properties and vegetable yield in solar greenhouse. Chinese Journal of Applied Ecology 27:1553−59 doi: 10.13287/j.1001-9332.201605.037 |
[57] |
Gupta S, Kaushal R, Spehia RS, Pathania SS, Sharma V. 2017. Productivity of capsicum influenced by conjoint application of isolated indigenous PGPR and chemical fertilizers. Journal of Plant Nutrition 40:921−27 doi: 10.1080/01904167.2015.1093139 |