[1] |
Ritonga FN, Ngatia JN, Wang Y, Khoso MA, Farooq U, et al. 2021. AP2/ERF, an important cold stress-related transcription factor family in plants: a review. Physiology and Molecular Biology of Plants 27:1953−68 doi: 10.1007/s12298-021-01061-8 |
[2] |
Roy S. 2016. Function of MYB domain transcription factors in abiotic stress and epigenetic control of stress response in plant genome. Plant Signaling & Behavior 11:e1117723 doi: 10.1080/15592324.2015.1117723 |
[3] |
Hugouvieux V, Zubieta C. 2018. MADS transcription factors cooperate: complexities of complex formation. Journal of Experimental Botany 69:1821−23 doi: 10.1093/jxb/ery099 |
[4] |
Bakshi M, Oelmüller R. 2014. WRKY transcription factors: Jack of many trades in plants. Plant Signaling & Behavior 9:e27700 doi: 10.4161/psb.27700 |
[5] |
Pireyre M, Burow M. 2015. Regulation of MYB and bHLH transcription factors: a glance at the protein level. Molecular Plant 8:378−88 doi: 10.1016/j.molp.2014.11.022 |
[6] |
Xie Z, Nolan TM, Jiang H, Yin Y. 2019. AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in Arabidopsis. Frontiers in Plant Science 10:228 doi: 10.3389/fpls.2019.00228 |
[7] |
Zhang J, Shi SZ, Jiang Y, Zhong F, Liu G, et al. 2021. Genome-wide investigation of the AP2/ERF superfamily and their expression under salt stress in Chinese willow (Salix matsudana). PeerJ 9:e11076 doi: 10.7717/peerj.11076 |
[8] |
Li X, Tao S, Wei S, Ming M, Huang X, et al. 2018. The mining and evolutionary investigation of AP2/ERF genes in pear (Pyrus). BMC Plant Biology 18:46 doi: 10.1186/s12870-018-1265-x |
[9] |
Cao S, Wang Y, Li X, Gao F, Feng J, et al. 2020. Characterization of the AP2/ERF transcription factor family and expression profiling of DREB subfamily under cold and osmotic stresses in Ammopiptanthus nanus. Plants 9:455 doi: 10.3390/plants9040455 |
[10] |
Gu C, Guo ZH, Hao PP, Wang GM, Jin ZM, et al. 2017. Multiple regulatory roles of AP2/ERF transcription factor in angiosperm. Botanical Studies 58:6 doi: 10.1186/s40529-016-0159-1 |
[11] |
Wan R, Song J, Lv Z, Qi X, Han X, et al. 2022. Genome-wide identification and comprehensive analysis of the AP2/ERF gene family in pomegranate fruit development and postharvest preservation. Genes 13:895 doi: 10.3390/genes13050895 |
[12] |
Jiang Q, Wang Z, Hu G, Yao X. 2022. Genome-wide identification and characterization of AP2/ERF gene superfamily during flower development in Actinidia eriantha. BMC Genomics 23:650 doi: 10.1186/s12864-022-08871-4 |
[13] |
Sheng L, Ma C, Chen Y, Gao H, Wang J. 2021. Genome-wide screening of AP2 transcription factors involving in fruit color and aroma regulation of cultivated strawberry. Genes 12:530 doi: 10.3390/genes12040530 |
[14] |
Zhang H, Pan X, Liu S, Lin W, Li Y, et al. 2021. Genome-wide analysis of AP2/ERF transcription factors in pineapple reveals functional divergence during flowering induction mediated by ethylene and floral organ development. Genomics 113:474−89 doi: 10.1016/j.ygeno.2020.10.040 |
[15] |
Cao D, Lin Z, Huang L, Damaris RN, Yang P. 2021. Genome-wide analysis of AP2/ERF superfamily in lotus (Nelumbo nucifera) and the association between NnADAP and rhizome morphology. BMC Genomics 22:171 doi: 10.1186/s12864-021-07473-w |
[16] |
Zhang CH, Shangguan LF, Ma RJ, Sun X, Tao R, et al. 2012. Genome-wide analysis of the AP2/ERF superfamily in peach (Prunus persica). Genetics and Molecular Research 11:4789−809 doi: 10.4238/2012.October.17.6 |
[17] |
Ma Y, Zhang F, Bade R, Daxibater A, Men Z, et al. 2015. Genome-wide identification and phylogenetic analysis of the ERF gene family in melon. Journal of Plant Growth Regulation 34:66−77 doi: 10.1007/s00344-014-9443-z |
[18] |
Tiwari SB, Belachew A, Ma SF, Young M, Ade J, et al. 2012. The EDLL motif: a potent plant transcriptional activation domain from AP2/ERF transcription factors. The Plant Journal 70:855−65 doi: 10.1111/j.1365-313X.2012.04935.x |
[19] |
Li T, Jiang Z, Zhang L, Tan D, Wei Y, et al. 2016. Apple (Malus domestica) MdERF2 negatively affects ethylene biosynthesis during fruit ripening by suppressing MdACS1 transcription. The Plant Journal 88:735−48 doi: 10.1111/tpj.13289 |
[20] |
Li X, Xu Y, Shen S, Yin X, Klee H, et al. 2017. Transcription factor CitERF71 activates the terpene synthase gene CitTPS16 involved in the synthesis of E-geraniol in sweet orange fruit. Journal of Experimental Botany 68:4929−38 doi: 10.1093/jxb/erx316 |
[21] |
Wang X, Zeng W, Ding Y, Wang Y, Niu L, et al. 2019. Peach ethylene response factor PpeERF2 represses the expression of ABA biosynthesis and cell wall degradation genes during fruit ripening. Plant Science 283:116−26 doi: 10.1016/j.plantsci.2019.02.009 |
[22] |
Zhang S, Wu Y, Huang X, Wu W, Lyu L, Li W. 2024. AP2 family identification in blackberry reveals the fruit ripening/color-change-related expression of RuAP2-1 and RuAP2-6 targeted by miR172. Trees 38:393−407 doi: 10.1007/s00468-024-02489-7 |
[23] |
Han D, Huang B, Li Y, Dang Q, Fan L, et al. 2022. The MdAP2-34 modulates flavonoid accumulation in apple (Malus domestica Borkh.) by regulating MdF3'H. Postharvest Biology and Technology 192:111994 doi: 10.1016/j.postharvbio.2022.111994 |
[24] |
Jiang Y, Peng J, Wang M, Su W, Gan X, et al. 2020. The role of EjSPL3, EjSPL4, EjSPL5, and EjSPL9 in regulating flowering in loquat (Eriobotrya japonica Lindl.). International Journal of Molecular Sciences 21:248 doi: 10.3390/ijms21010248 |
[25] |
Cai J, Chen T, Zhang Z, Li B, Qin G, et al. 2019. Metabolic dynamics during loquat fruit ripening and postharvest technologies. Frontiers in Plant Science 10:619 doi: 10.3389/fpls.2019.00619 |
[26] |
Su W, Shao Z, Wang M, Gan X, Yang X, et al. 2021. EjBZR1 represses fruit enlargement by binding to the EjCYP90 promoter in loquat. Horticulture Research 8:152 doi: 10.1038/s41438-021-00586-z |
[27] |
Song H, Zhao K, Jiang G, Sun S, Li J, et al. 2023. Genome-wide identification and expression analysis of the SBP-box gene family in loquat fruit development. Genes 15:23 doi: 10.3390/genes15010023 |
[28] |
Yu Y, Yang M, Liu X, Xia Y, Hu R, et al. 2022. Genome-wide analysis of the WOX gene family and the role of EjWUSa in regulating flowering in loquat (Eriobotrya japonica). Frontiers in Plant Science 13:1024515 doi: 10.3389/fpls.2022.1024515 |
[29] |
Chen J, Zhou Y, Zhang Q, Liu Q, Li L, et al. 2020. Structural variation, functional differentiation and expression characteristics of the AP2/ERF gene family and its response to cold stress and methyl jasmonate in Panax ginseng C.A. Meyer. PLoS One 15:e0226055 doi: 10.1371/journal.pone.0226055 |
[30] |
Feng K, Hou XL, Xing GM, Liu JX, Duan AQ, et al. 2020. Advances in AP2/ERF super-family transcription factors in plant. Critical Reviews in Biotechnology 40:750−76 doi: 10.1080/07388551.2020.1768509 |
[31] |
Wang Y, Du X, Liu M, Liu X, Zhao L, et al. 2023. Genome-wide analysis of the AP2/ERF family in oily persimmon (Diospyros oleifera) and their preliminary roles exploration in response to polyamines for adventitious root formation in cultivated persimmon (D. kaki). Horticulturae 9:191 doi: 10.3390/horticulturae9020191 |
[32] |
Xu L, Lan Y, Lin M, Zhou H, Ying S, et al. 2024. Genome-wide identification and transcriptional analysis of AP2/ERF gene family in pearl millet (Pennisetum glaucum). International Journal of Molecular Sciences 25:2470 doi: 10.3390/ijms25052470 |
[33] |
Dou H, Wang T, Zhou X, Feng X, Tang W, et al. 2024. Genome-wide identification and expression of the AP2/ERF gene family in Morus notabilis. Forests 15:697 doi: 10.3390/f15040697 |
[34] |
Xu Y, Li X, Yang X, Wassie M, Shi H. 2023. Genome-wide identification and molecular characterization of the AP2/ERF superfamily members in sand pear (Pyrus pyrifolia). BMC Genomics 24:32 doi: 10.1186/s12864-022-09104-4 |
[35] |
Chen H, Hu L, Wang L, Wang S, Cheng X. 2022. Genome-wide identification and expression profiles of AP2/ERF transcription factor family in mung bean (Vigna radiata L.). Journal of Applied Genetics 63:223−36 doi: 10.1007/s13353-021-00675-8 |
[36] |
Xie XL, Shen SL, Yin XR, Xu Q, Sun CD, et al. 2014. Isolation, classification and transcription profiles of the AP2/ERF transcription factor superfamily in citrus. Molecular Biology Reports 41:4261−71 doi: 10.1007/s11033-014-3297-0 |
[37] |
Tao J, Jia H, Wu M, Zhong W, Jia D, et al. 2022. Genome-wide identification and characterization of the TIFY gene family in kiwifruit. BMC Genomics 23:179 doi: 10.1186/s12864-022-08398-8 |
[38] |
Zafar MM, Rehman A, Razzaq A, Parvaiz A, Mustafa G, et al. 2022. Genome-wide characterization and expression analysis of ERF gene family in cotton. BMC Plant Biology 22:134 doi: 10.1186/s12870-022-03521-z |
[39] |
He S, Hao X, He S, Hao X, Zhang P, et al. 2021. Genome-wide identification, phylogeny and expression analysis of AP2/ERF transcription factors family in sweet potato. BMC Genomics 22:748 doi: 10.1186/s12864-021-08043-w |
[40] |
Yu Z, Zhang D, Hu S, Liu X, Zeng B, et al. 2022. Genome-wide analysis of the almond AP2/ERF superfamily and its functional prediction during dormancy in response to freezing stress. Biology 11:1520 doi: 10.3390/biology11101520 |
[41] |
Liu M, Sun W, Ma Z, Zheng T, Huang L, et al. 2019. Genome-wide investigation of the AP2/ERF gene family in tartary buckwheat (Fagopyum Tataricum). BMC Plant Biology 19:84 doi: 10.1186/s12870-019-1681-6 |
[42] |
Hu L, Liu S. 2011. Genome-wide identification and phylogenetic analysis of the ERF gene family in cucumbers. Genetics and Molecular Biology 34:625−33 doi: 10.1590/S1415-47572011005000054 |
[43] |
Ren R, Wang H, Guo C, Zhang N, Zeng L, et al. 2018. Widespread whole genome duplications contribute to genome complexity and species diversity in Angiosperms. Molecular Plant 11:414−28 doi: 10.1016/j.molp.2018.01.002 |
[44] |
Yang Z, Jin H, Chen J, Li C, Wang J, et al. 2021. Identification and analysis of the AP2 subfamily transcription factors in the pecan (Carya illinoinensis). International Journal of Molecular Sciences 22:13568 doi: 10.3390/ijms222413568 |
[45] |
Yue P, Wang Y, Bu H, Li X, Yuan H, et al. 2019. Ethylene promotes IAA reduction through PuERFs-activated PuGH3.1 during fruit ripening in pear (Pyrus ussuriensis). Postharvest Biology and Technology 157:110955 doi: 10.1016/j.postharvbio.2019.110955 |
[46] |
Cui Y, Zhai Y, He J, Song M, Flaishman MA, Ma H. 2022. AP2/ERF genes associated with superfast fig (Ficus carica L.) fruit ripening. Frontiers in Plant Science 13:1040796 doi: 10.3389/fpls.2022.1040796 |
[47] |
Guo Z, He L, Sun X, Li C, Su J, et al. 2023. Genome-wide analysis of the Rhododendron AP2/ERF gene family: identification and expression profiles in response to cold, salt and drought stress. Plants 12:994 doi: 10.3390/plants12050994 |