[1]

López-Gutiérrez N, Aguilera-Luiz MD, Romero-González R, Vidal JL, Garrido Frenich A. 2014. Fast analysis of polyphenols in royal jelly products using automated TurboFlow™-liquid chromatography-Orbitrap high resolution mass spectrometry. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences 973:17−28

doi: 10.1016/j.jchromb.2014.09.038
[2]

Pasupuleti VR, Sammugam L, Ramesh N, Gan SH. 2017. Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits. Oxidative Medicine and Cellular Longevity 2017:1259510

doi: 10.1155/2017/1259510
[3]

Spannhoff A, Kim YK, Raynal NJM, Gharibyan V, Su MB, et al. 2011. Histone deacetylase inhibitor activity in royal jelly might facilitate caste switching in bees. EMBO Reports 12:238−43

doi: 10.1038/embor.2011.9
[4]

Page RE, Jr., Peng CY. 2001. Aging and development in social insects with emphasis on the honey bee, Apis mellifera L. Experimental Gerontology 36:695−711

doi: 10.1016/S0531-5565(00)00236-9
[5]

Drapeau MD, Albert S, Kucharski R, Prusko C, Maleszka R. 2006. Evolution of the Yellow/Major Royal Jelly Protein family and the emergence of social behavior in honey bees. Genome Research 16:1385−94

doi: 10.1101/gr.5012006
[6]

Groh C, Rössler W. 2008. Caste-specific postembryonic development of primary and secondary olfactory centers in the female honeybee brain. Arthropod Structure & Development 37:459−68

doi: 10.1016/j.asd.2008.04.001
[7]

Maleszka R. 2008. Epigenetic integration of environmental and genomic signals in honey bees: the critical interplay of nutritional, brain and reproductive networks. Epigenetics 3:188−92

doi: 10.4161/epi.3.4.6697
[8]

Kucharski R, Maleszka J, Foret S, Maleszka R. 2008. Nutritional control of reproductive status in honeybees via DNA methylation. Science 319:1827−30

doi: 10.1126/science.1153069
[9]

Alhosin M. 2023. Epigenetics mechanisms of honeybees: secrets of royal jelly. Epigenetics Insights 16:25168657231213717

doi: 10.1177/25168657231213717
[10]

Botezan S, Baci GM, Bagameri L, Pașca C, Dezmirean DS. 2023. Current status of the bioactive properties of royal jelly: a comprehensive review with a focus on its anticancer, anti-inflammatory, and antioxidant effects. Molecules 28:1510

doi: 10.3390/molecules28031510
[11]

Kang KA, Piao MJ, Hyun YJ, Zhen AX, Cho SJ, et al. 2019. Luteolin promotes apoptotic cell death via upregulation of Nrf2 expression by DNA demethylase and the interaction of Nrf2 with p53 in human colon cancer cells. Experimental & Molecular Medicine 51:1−14

doi: 10.1038/s12276-019-0238-y
[12]

Pramodh S, Raina R, Hussain A, Bagabir SA, Haque S, et al. 2022. Luteolin causes 5'CpG demethylation of the promoters of TSGs and modulates the aberrant histone modifications, restoring the expression of TSGs in human cancer cells. International Journal of Molecular Sciences 23:4067

doi: 10.3390/ijms23074067
[13]

Qiu W, Lin J, Zhu Y, Zhang J, Zeng L, et al. 2017. Kaempferol Modulates DNA Methylation and Downregulates DNMT3B in Bladder Cancer. Cellular Physiology and Biochemistry 41:1325−35

doi: 10.1159/000464435
[14]

Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, et al. 2018. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research 46:W296−W303

doi: 10.1093/nar/gky427
[15]

Altayb HN. 2022. Fludarabine, a potential DNA-dependent RNA polymerase inhibitor, as a prospective drug against monkeypox virus: a computational approach. Pharmaceuticals 15:1129

doi: 10.3390/ph15091129
[16]

Ayipo YO, Alananzeh WA, Ahmad I, Patel H, Mordi MN. 2023. Structural modelling and in silico pharmacology of β-carboline alkaloids as potent 5-HT1A receptor antagonists and reuptake inhibitors. Journal of Biomolecular Structure & Dynamics 41:6219−35

doi: 10.1080/07391102.2022.2104376
[17]

Zhang ZM, Lu R, Wang P, Yu Y, Chen D, et al. 2018. Structural basis for DNMT3A-mediated de novo DNA methylation. Nature 554:387−91

doi: 10.1038/nature25477
[18]

Bronner C, Alhosin M, Hamiche A, Mousli M. 2019. Coordinated dialogue between UHRF1 and DNMT1 to ensure faithful inheritance of methylated DNA patterns. Genes 10:65

doi: 10.3390/genes10010065
[19]

Wang Y, Jorda M, Jones PL, Maleszka R, Ling X, et al. 2006. Functional CpG methylation system in a social insect. Science 314:645−47

doi: 10.1126/science.1135213
[20]

Goll MG, Bestor TH. 2005. Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74:481−514

doi: 10.1146/annurev.biochem.74.010904.153721
[21]

Chen Z, Zhang Y. 2020. Role of Mammalian DNA Methyltransferases in Development. Annual Review of Biochemistry 89:135−58

doi: 10.1146/annurev-biochem-103019-102815
[22]

Smith ZD, Chan MM, Mikkelsen TS, Gu H, Gnirke A, et al. 2012. A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature 484:339−44

doi: 10.1038/nature10960
[23]

Shi YY, Huang ZY, Zeng ZJ, Wang ZL, Wu XB, et al. 2011. Diet and cell size both affect queen-worker differentiation through DNA methylation in honey bees (Apis mellifera, Apidae). PLoS One 6:e18808

doi: 10.1371/journal.pone.0018808
[24]

Lu Q, Shu Y, Wang L, Li G, Zhang S, et al. 2021. The protective effect of Veronica ciliata Fisch. Extracts on relieving oxidative stress-induced liver injury via activating AMPK/p62/Nrf2 pathway. Journal of Ethnopharmacology 270:113775

doi: 10.1016/j.jep.2021.113775
[25]

De Leo E, Elmonem MA, Berlingerio SP, Berquez M, Festa BP, et al. 2020. Cell-based phenotypic drug screening identifies luteolin as candidate therapeutic for Nephropathic Cystinosis. Journal of the American Society of Nephrology 31:1522−37

doi: 10.1681/ASN.2019090956
[26]

Liu YS, Yang Q, Li S, Luo L, Liu HY, et al. 2021. Luteolin attenuates angiotensin II-induced renal damage in apolipoprotein E-deficient mice. Molecular Medicine Reports 23:157

doi: 10.3892/mmr.2020.11796
[27]

Gao L, Emperle M, Guo Y, Grimm SA, Ren W, et al. 2020. Comprehensive structure-function characterization of DNMT3B and DNMT3A reveals distinctive de novo DNA methylation mechanisms. Nature Communications 11:3355

doi: 10.1038/s41467-020-17109-4
[28]

Aoki A, Suetake I, Miyagawa J, Fujio T, Chijiwa T, et al. 2001. Enzymatic properties of de novo-type mouse DNA (cytosine-5) methyltransferases. Nucleic Acids Research 29:3506−12

doi: 10.1093/nar/29.17.3506
[29]

Handa V, Jeltsch A. 2005. Profound flanking sequence preference of Dnmt3a and Dnmt3b mammalian DNA methyltransferases shape the human epigenome. Journal of Molecular Biology 348:1103−12

doi: 10.1016/j.jmb.2005.02.044
[30]

Shivanika C, Deepak Kumar S, Ragunathan V, Tiwari P, Sumitha A, et al. 2022. Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. Journal of Biomolecular Structure and Dynamics 40:585−611

doi: 10.1080/07391102.2020.1815584
[31]

Suetake I, Mishima Y, Kimura H, Lee YH, Goto Y, et al. 2011. Characterization of DNA-binding activity in the N-terminal domain of the DNA methyltransferase Dnmt3a. The Biochemical Journal 437:141−48

doi: 10.1042/BJ20110241
[32]

Ren W, Gao L, Song J. 2018. Structural Basis of DNMT1 and DNMT3A-Mediated DNA Methylation. Genes 9:620

doi: 10.3390/genes9120620
[33]

Ghanbari E, Khazaei MR, Khazaei M, Nejati V. 2018. Royal Jelly Promotes Ovarian Follicles Growth and Increases Steroid Hormones in Immature Rats. International Journal of Fertility & Sterility 11:263−69

doi: 10.22074/ijfs.2018.5156
[34]

Khazaei F, Ghanbari E, Khazaei M. 2021. Improved hormonal and oxidative changes by Royal Jelly in the rat model of PCOS: An experimental study. International Journal of Reproductive Biomedicine 19:515−24

doi: 10.18502/ijrm.v19i6.9373