[1]

Li H, Durbin R. 2024. Genome assembly in the telomere-to-telomere era. Nature Reviews Genetics 25:658−70

doi: 10.1038/s41576-024-00718-w
[2]

Rhie A, McCarthy SA, Fedrigo O, Damas J, Formenti G, et al. 2021. Towards complete and error-free genome assemblies of all vertebrate species. Nature 592:737−46

doi: 10.1038/s41586-021-03451-0
[3]

Gong Y, Li Y, Liu X, Ma Y, Jiang L. 2023. A review of the pangenome: how it affects our understanding of genomic variation, selection and breeding in domestic animals? Journal of Animal Science and Biotechnology 14:73

doi: 10.1186/s40104-023-00860-1
[4]

Groza C, Schwendinger-Schreck C, Cheung WA, Farrow EG, Thiffault I, et al. 2024. Pangenome graphs improve the analysis of structural variants in rare genetic diseases. Nature Communications 15:657

doi: 10.1038/s41467-024-44980-2
[5]

Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, et al. 2018. MUMmer4: a fast and versatile genome alignment system. PLoS Computational Biology 14:e1005944

doi: 10.1371/journal.pcbi.1005944
[6]

Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34:3094−100

doi: 10.1093/bioinformatics/bty191
[7]

Song B, Marco-Sola S, Moreto M, Johnson L, Buckler ES, et al. 2022. AnchorWave: sensitive alignment of genomes with high sequence diversity, extensive structural polymorphism, and whole-genome duplication. Proceedings of the National Academy of Sciences of the United States of America 119:e2113075119

doi: 10.1073/pnas.2113075119
[8]

Goel M, Sun H, Jiao WB, Schneeberger K. 2019. SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biology 20:277

doi: 10.1186/s13059-019-1911-0
[9]

Zhang B, Huang H, Tibbs-Cortes LE, Vanous A, Zhang Z, et al. 2023. Streamline unsupervised machine learning to survey and graph indel-based haplotypes from pan-genomes. Molecular Plant 16:975−78

doi: 10.1016/j.molp.2023.05.005
[10]

Hufford MB, Seetharam AS, Woodhouse MR, Chougule KM, Ou S, et al. 2021. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science 373:655−62

doi: 10.1126/science.abg5289
[11]

Chen J, Wang Z, Tan K, Huang W, Shi J, et al. 2023. A complete telomere-to-telomere assembly of the maize genome. Nature Genetics 55:1221−31

doi: 10.1038/s41588-023-01419-6
[12]

Lin G, He C, Zheng J, Koo DH, Le H, et al. 2021. Chromosome-level genome assembly of a regenerable maize inbred line A188. Genome Biology 22:175

doi: 10.1186/s13059-021-02396-x
[13]

Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841−42

doi: 10.1093/bioinformatics/btq033
[14]

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. Journal of Molecular Biology 215:403−10

doi: 10.1016/S0022-2836(05)80360-2
[15]

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, et al. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10:421

doi: 10.1186/1471-2105-10-421
[16]

Shyam C, Borgato EA, Peterson DE, Dille JA, Jugulam M. 2021. Predominance of metabolic resistance in a six-way-resistant palmer amaranth (Amaranthus palmeri) population. Frontiers in Plant Science 11:614618

doi: 10.3389/fpls.2020.614618
[17]

Hake S, Smith HMS, Holtan H, Magnani E, Mele G, et al. 2004. The role of Knox genes in plant development. Annual Review of Cell and Developmental Biology 20:125−51

doi: 10.1146/annurev.cellbio.20.031803.093824
[18]

Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, et al. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology 7:539

doi: 10.1038/msb.2011.75
[19]

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32:1792−97

doi: 10.1093/nar/gkh340
[20]

Katoh K, Misawa K, Kuma K, Miyata T. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30:3059−66

doi: 10.1093/nar/gkf436
[21]

Li W, Godzik A. 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658−59

doi: 10.1093/bioinformatics/btl158
[22]

Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, et al. 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6:80−92

doi: 10.4161/fly.19695
[23]

Liu XM, Xu X, Li BH, Yao XX, Zhang HH, et al. 2018. Genomic and transcriptomic insights into cytochrome P450 monooxygenase genes involved in nicosulfuron tolerance in maize (Zea mays L.). Journal of Integrative Agriculture 17:1790−99

doi: 10.1016/s2095-3119(18)61921-5
[24]

Pataky JK, Williams MM, Riechers DE, Meyer MD. 2009. A common genetic basis for cross-sensitivity to mesotrione and nicosulfuron in sweet corn hybrid cultivars and inbreds grown throughout North America. Journal of the American Society for Horticultural Science 134:252−60

doi: 10.21273/jashs.134.2.252
[25]

Liu X, Bi B, Xu X, Li B, Tian S, et al. 2019. Rapid identification of a candidate nicosulfuron sensitivity gene (Nss) in maize (Zea mays L.) via combining bulked segregant analysis and RNA-seq. Theoretical and Applied Genetics 132:1351−61

doi: 10.1007/s00122-019-03282-8
[26]

Zhang Y, Zhang Q, Liu Q, Zhao Y, Xu W, et al. 2024. Fine mapping and functional validation of the maize nicosulfuron-resistance gene CYP81A9. Frontiers in Plant Science 15:1443413

doi: 10.3389/fpls.2024.1443413
[27]

Cheng J, Novati G, Pan J, Bycroft C, Žemgulytė A, et al. 2023. Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science 381:eadg7492

doi: 10.1126/science.adg7492
[28]

Brandes N, Goldman G, Wang CH, Ye CJ, Ntranos V. 2023. Genome-wide prediction of disease variant effects with a deep protein language model. Nature Genetics 55:1512−22

doi: 10.1038/s41588-023-01465-0
[29]

Eizenga JM, Novak AM, Sibbesen JA, Heumos S, Ghaffaari A, et al. 2020. Pangenome graphs. Annual Review of Genomics and Human Genetics 21:139−62

doi: 10.1146/annurev-genom-120219-080406
[30]

Guarracino A, Heumos S, Nahnsen S, Prins P, Garrison E. 2022. ODGI: understanding pangenome graphs. Bioinformatics 38:3319−26

doi: 10.1093/bioinformatics/btac308