[1] |
Romero I, Vazquez-Hernandez M, Maestro-Gaitan I, Escribano MI, Merodio C, et al. 2020. Table grapes during postharvest storage: a review of the mechanisms implicated in the beneficial effects of treatments applied for quality retention. International Journal of Molecular Sciences 21(23):9320 doi: 10.3390/ijms21239320 |
[2] |
Wu Y, Duan S, Zhao L, Gao Z, Luo M, et al. 2016. Aroma characterization based on aromatic series analysis in table grapes. Scientific Reports 6:31116 doi: 10.1038/srep31116 |
[3] |
Lu HC, Chen WK, Wang Y, Bai XJ, Cheng G, et al. 2021. Effect of the seasonal climatic variations on the accumulation of fruit volatiles in four grape varieties under the double cropping system. Frontiers in Plant Science 12:809558 doi: 10.3389/fpls.2021.809558 |
[4] |
Ubeda C, Cortiella MGI, Villalobos-González L, Gómez C, Pastenes C, et al. 2020. Ripening and storage time effects on the aromatic profile of new table grape cultivars in Chile. Molecules 25:5790 doi: 10.3390/molecules25245790 |
[5] |
Xu XQ, Liu B, Zhu BQ, Lan YB, Gao Y, et al. 2015. Differences in volatile profiles of Cabernet Sauvignon grapes grown in two distinct regions of China and their responses to weather conditions. Plant Physiology and Biochemistry 89:123−33 doi: 10.1016/j.plaphy.2015.02.020 |
[6] |
El Hadi MAM, Zhang FJ, Wu FF, Zhou CH, Tao J. 2013. Advances in fruit aroma volatile research. Molecules 18(7):8200−29 doi: 10.3390/molecules18078200 |
[7] |
Yang C, Wang Y, Liang Z, Fan P, Wu B, et al. 2009. Volatiles of grape berries evaluated at the germplasm level by headspace-SPME with GC-MS. Food Chemistry 114:1106−14 doi: 10.1016/j.foodchem.2008.10.061 |
[8] |
Chen H, Zhang Z, Zhang L, Bai S, Ning P, et al. 2024. Comparative analysis of the evolution of green leaf volatiles and aroma in six Vitis vinifera L. cultivars during berry maturation in the Chinese Loess Plateau region. Foods 13(8):1207 doi: 10.3390/foods13081207 |
[9] |
Scafidi P, Pisciotta A, Patti D, Pasquale T, Di Rosario L, et al. 2013. Effect of artificial shading on the tannin accumulation and aromatic composition of the Grillo cultivar (Vitis vinifera L.). BMC Plant Biology 13:175 doi: 10.1186/1471-2229-13-175 |
[10] |
Sun Q, Zhao Y, Zhu S, Du F, Mao R, et al. 2022. Rain-shelter cultivation affects the accumulation of volatiles in 'Shuijing' grape berries during development. HortScience 57(8):877−88 doi: 10.21273/HORTSCI16567-22 |
[11] |
Xie S, Lei Y, Wang Y, Wang X, Ren R, et al. 2019. Influence of continental climates on the volatile profile of Cabernet Sauvignon grapes from five Chinese viticulture regions. Plant Growth Regulation 87:83−92 doi: 10.1007/s10725-018-0455-8 |
[12] |
Rodríguez-Lorenzo M, Mauri N, Royo C, Rambla JL, Diretto G, et al. 2023. The flavour of grape colour: anthocyanin content tunes aroma precursor composition by altering the berry microenvironment. Journal of Experimental Botany 74(20):6369−90 doi: 10.1093/jxb/erad223 |
[13] |
Mencarelli F, Bellincontro A. 2020. Recent advances in postharvest technology of the wine grape to improve the wine aroma. Journal of the Science of Food and Agriculture 100(14):5046−55 doi: 10.1002/jsfa.8910 |
[14] |
Ding S, Su P, Wang D, Chen X, Tang C, et al. 2023. Blue and red light proportion affects growth, nutritional composition, antioxidant properties and volatile compounds of Toona sinensis sprouts. LWT 173:114400 doi: 10.1016/j.lwt.2022.114400 |
[15] |
He L, Xu XQ, Wang Y, Chen WK, Sun RZ, et al. 2020. Modulation of volatile compound metabolome and transcriptome in grape berries exposed to sunlight under dry-hot climate. BMC Plant Biology 20:59 doi: 10.1186/s12870-020-2268-y |
[16] |
Pons A, Allamy L, Schüttler A, Rauhut D, Thibon C, et al. 2017. What is the expected impact of climate change on wine aroma compounds and their precursors in grape? OENO One 51:141−46 doi: 10.20870/oeno-one.2017.51.2.1868 |
[17] |
González-Barreiro C, Rial-Otero R, Cancho-Grande B, Simal-Gándara J. 2015. Wine aroma compounds in grapes: a critical review. Critical Reviews in Food Science and Nutrition 55(2):202−18 doi: 10.1080/10408398.2011.650336 |
[18] |
Reynolds AG, Wardle DA, Dever M. 1996. Vine performance, fruit composition, and wine sensory attributes of gewürztraminer in response to vineyard location and canopy manipulation. American Journal of Enology and Viticulture 47(1):77−92 doi: 10.5344/ajev.1996.47.1.77 |
[19] |
Kovalenko Y, Tindjau R, Madilao LL, Castellarin SD. 2021. Regulated deficit irrigation strategies affect the terpene accumulation in Gewürztraminer (Vitis vinifera L.) grapes grown in the Okanagan Valley. Food Chemistry 341:128172 doi: 10.1016/j.foodchem.2020.128172 |
[20] |
Leng F, Zhou J, Wang C, Sun L, Zhang Y, et al. 2022. Post-veraison different frequencies of water deficit strategies enhance Reliance grapes quality under root restriction. Food Chemistry 390:133181 doi: 10.1016/j.foodchem.2022.133181 |
[21] |
Khalil-Ur-Rehman M, Wang W, Dong Y, Faheem M, Xu Y, et al. 2019. Comparative transcriptomic and proteomic analysis to deeply investigate the role of hydrogen cyanamide in grape bud dormancy. International Journal of Molecular Sciences 20:3528 doi: 10.3390/ijms20143528 |
[22] |
Lu G, Zhang K, Que Y, Li Y. 2023. Grapevine double cropping: a magic technology. Frontiers in Plant Science 14:1173985 doi: 10.3389/fpls.2023.1173985 |
[23] |
Guo R, Wang B, Cheng G, Lin L, Cao X, et al. 2016. Research advances in regionalization for two-crop-a-year grape cultivation in China. Journal of Southern Agriculture 47:2091−97 doi: 10.3969/j:issn.2095-1191.2016.12.2091 |
[24] |
Cheng G, Zhou S, Liu J, Feng Q, Wei R, et al. 2023. Widely targeted metabolomics provides new insights into the flavonoid metabolism in 'Kyoho' grapes under a two-crop-a-year cultivation system. Horticulturae 9(2):154 doi: 10.3390/horticulturae9020154 |
[25] |
Li F, Jia J, Song X, Liu X, Zhu X, et al. 2021. Selection of grape varieties suitable for double cropping a year in northern greenhouse. Agricultural Biotechnology 10(5):5−11 |
[26] |
Ma Y, Gao Z, Du W, Xie F, Ren G, et al. 2023. Integrated metabolomic and transcriptomic analyses reveal that bagging delays ripening of 'Ruidu Kemei' grape berries. Scientia Horticulturae 317:112058 doi: 10.1016/j.scienta.2023.112058 |
[27] |
Bindi M, Miglietta F, Gozzini B, Orlandini S, Seghi L. 1997. A simple model for simulation of growth and development in grapevine (Vitis vinifera L.) II. model validation. Vitis 36:73−76 |
[28] |
Cheng G, Zhou S, Zhang J, Huang X, Bai X, et al. 2019. Comparison of transcriptional expression patterns of phenols and carotenoids in 'Kyoho' grapes under a two-crop-a-year cultivation system. PLoS ONE 14(1):e0210322 doi: 10.1371/journal.pone.0210322 |
[29] |
Chen WK, Bai XJ, Cao MM, Cheng G, Cao XJ, et al. 2017. Dissecting the variations of ripening progression and flavonoid metabolism in grape berries grown under double cropping system. Frontiers in Plant Science 8:1912 doi: 10.3389/fpls.2017.01912 |
[30] |
Wang H, Wang X, Yan A, Liu Z, Ren J, et al. 2023. Metabolomic and transcriptomic integrated analysis revealed the decrease of monoterpenes accumulation in table grapes during long time low temperature storage. Food Research International 174:113601 doi: 10.1016/j.foodres.2023.113601 |
[31] |
Alessandrini M, Gaiotti F, Belfiore N, Matarese F, D'Onofrio C, et al. 2017. Influence of vineyard altitude on Glera grape ripening (Vitis vinifera L.): effects on aroma evolution and wine sensory profile. Journal of the Science of Food and Agriculture 97(9):2695−705 doi: 10.1002/jsfa.8093 |
[32] |
Beekwilder J, Alvarez-Huerta M, Neef E, Verstappen FWA, Bouwmeester HJ, et al. 2004. Functional characterization of enzymes forming volatile esters from strawberry and banana. Plant Physiology 135(4):1865−78 doi: 10.1104/pp.104.042580 |
[33] |
Friedel M, Frotscher J, Nitsch M, Hofmann M, Bogs J, et al. 2016. Light promotes expression of monoterpene and flavonol metabolic genes and enhances flavour of winegrape berries (Vitis vinifera L.cv. Riesling). Australian Journal of Grape and Wine Research 22:409−21 doi: 10.1111/ajgw.12229 |
[34] |
Kwasniewski MT, Vanden Heuvel JE, Pan BS, Sacks GL. 2010. Timing of cluster light environment manipulation during grape development affects C13 norisoprenoid and carotenoid concentrations in Riesling. Journal of Agricultural and Food Chemistry 58(11):6841−49 doi: 10.1021/jf904555p |
[35] |
Zhang E, Chai F, Zhang H, Li S, Liang Z, et al. 2017. Effects of sunlight exclusion on the profiles of monoterpene biosynthesis and accumulation in grape exocarp and mesocarp. Food Chemistry 237:379−89 doi: 10.1016/j.foodchem.2017.05.127 |
[36] |
Yao H, Jin X, Feng M, Xu G, Zhang P, et al. 2021. Evolution of volatile profile and aroma potential of table grape Hutai-8 during berry ripening. Food Research International 143:110330 doi: 10.1016/j.foodres.2021.110330 |
[37] |
Dunlevy J, Kalua C, Keyzers R, Boss P. 2009. The production of flavour & aroma compounds in grape berries. In Grapevine Molecular Physiology & Biotechnology, ed. Roubelakis-Angelakis KA. Dordrecht: Springer. pp. 293−340. doi: 10.1007/978-90-481-2305-6_11 |