[1] |
Abdelhedi O, Nasri M. 2019. Basic and recent advances in marine antihypertensive peptides: Production, structure-activity relationship and bioavailability. Trends in Food Science & Technology 88:543−57 doi: 10.1016/j.jpgs.2019.04.002 |
[2] |
WHO. 2017. Global Health Observatory (GHO) Data. Raised Blood Pressure-situation and trends |
[3] |
Wu J, Xie D, Chen X, Tang YJ, Wang L, et al. 2019. Inhibitory mechanism of a substrate-type angiotensin I-converting enzyme inhibitory peptide. Process Biochemistry 79:97−104 doi: 10.1016/j.procbio.2018.12.018 |
[4] |
Ritchey MD, Gillespie C, Wozniak G, Shay CM, Thompson-Paul AM, et al. 2018. Potential need for expanded pharmacologic treatment and lifestyle modification services under the 2017 ACC/AHA Hypertension Guideline. Journal of Clinical Hypertension 20:1377−91 doi: 10.1111/jch.13364 |
[5] |
Tedla YG, Bautista LE. 2016. Drug Side Effect Symptoms and Adherence to Antihypertensive Medication. American Journal of Hypertension 29:772−79 doi: 10.1093/ajh/hpv185 |
[6] |
Aluko RE. 2015. Antihypertensive Peptides from Food Proteins. Annual Review of Food Science and Technology 6:235−62 doi: 10.1146/annurev-food-022814-015520 |
[7] |
Khurana V, Goswami B. 2022. Angiotensin converting enzyme (ACE). Clinica Chimica Acta 524:113−22 doi: 10.1016/j.cca.2021.10.029 |
[8] |
Zhao Y, Xu C. 2008. Structure and Function of Angiotensin Converting Enzyme and Its Inhibitors. Chinese Journal of Biotechnology 24:171−76 doi: 10.1016/S1872-2075(08)60007-2 |
[9] |
Qiao QQ, Luo QB, Suo SK, Zhao YQ, Chi CF, et al. 2022. Preparation, characterization, and cytoprotective effects on HUVECs of fourteen novel angiotensin-I-converting enzyme inhibitory peptides from protein hydrolysate of tuna processing by-products. Frontiers in Nutrition 9:868681 doi: 10.3389/fnut.2022.868681 |
[10] |
Wei G, Wang T, Li Y, He R, Huang A, et al. 2024. Identification, structural characterization, and molecular dynamic simulation of ACE inhibitory peptides in whey hydrolysates from Chinese Rushan cheese by-product. Food Chemistry: X 21:101211 doi: 10.1016/j.fochx.2024.101211 |
[11] |
Lin Z, Wu H, Zhang M. 2023. Isolation, identification, and structure-activity relationship of novel ACE inhibitory peptides from earthworm protein in vitro gastrointestinal digestion product. Food Bioscience 55:103010 doi: 10.1016/j.fbio.2023.103010 |
[12] |
Hu YD, Xi QH, Kong J, Zhao YQ, Chi CF, et al. 2023. Angiotensin-I-Converting Enzyme (ACE)-inhibitory peptides from the collagens of Monkfish (Lophius litulon) Swim Bladders: isolation, characterization, molecular docking analysis and activity evaluation. Marine Drugs 21:516 doi: 10.3390/md21100516 |
[13] |
Suo SK, Zheng SL, Chi CF, Luo HY, Wang B. 2022. Novel angiotensin-converting enzyme inhibitory peptides from tuna byproducts—milts: Preparation, characterization, molecular docking study, and antioxidant function on H2O2-damaged human umbilical vein endothelial cells. Frontiers in Nutrition 9:957778 doi: 10.3389/fnut.2022.957778 |
[14] |
Yushipitsina GG, Chuprova NA, Repyakh SM. 1988. Fractionation and amino acid compositon of proteins of the woody verdure of sea buckthorn. Chemistry of Natural Compounds 24:348−50 doi: 10.1007/BF00598585 |
[15] |
Biel W, Telesiński A, Jaroszewska A, Biel W. 2018. Effect of mycorrhization and variety on the chemical composition and antioxidant activity of sea buckthorn berries. Journal of Elementology 23:673−84 doi: 10.5601/jelem.2017.22.3.1434 |
[16] |
Larmo PS, Järvinen RL, Setälä NL, Yang B, Viitanen MH, et al. 2010. Oral sea buckthorn oil attenuates tear film osmolarity and symptoms in individuals with dry eye. The Journal of Nutrition 140:1462−68 doi: 10.3945/jn.109.118901 |
[17] |
Xing J, Yang B, Dong Y, Wang B, Wang J, et al. 2002. Effects of sea buckthorn (Hippophaë rhamnoides L.) seed and pulp oils on experimental models of gastric ulcer in rats. Fitoterapia 73:644−50 doi: 10.1016/s0367-326x(02)00221-6 |
[18] |
Li J, Su J, Chen M, Chen J, Ding W, et al. 2021. Two novel potent ACEI peptides isolated from Pinctada fucata meat hydrolysates using in silico analysis: identification, screening and inhibitory mechanisms. RSC Advances 11:12172−82 doi: 10.1039/D0RA10476K |
[19] |
Sosulski FW, Holt NW. 1980. Amino acid composition and nitrogen-to-protein factors for grain legumes. Canadian Journal of Plant Science 60:1327−31 doi: 10.4141/cjps80-187 |
[20] |
Zhu Y, Huang Y, Li M, Sun B, Liu L, et al. 2023. High Fischer ratio peptide of hemp seed: Preparation and anti-fatigue evaluation in vivo and in vitro. Food Research International 165:112534 doi: 10.1016/j.foodres.2023.112534 |
[21] |
Zhao C, Chu Z, Miao Z, Liu J, Liu J, et al. 2021. Ultrasound heat treatment effects on structure and acid-induced cold set gel properties of soybean protein isolate. Food Bioscience 39:100827 doi: 10.1016/j.fbio.2020.100827 |
[22] |
Lin N, Liu B, Liu Z, Qi T. 2020. Effects of different drying methods on the structures and functional properties of phosphorylated Antarctic krill protein. Journal of Food Science 85:3690−99 doi: 10.1111/1750-3841.15503 |
[23] |
Lear S, Cobb SL. 2016. Pep-Calc.com: a set of web utilities for the calculation of peptide and peptoid properties and automatic mass spectral peak assignment. Journal of Computer-Aided Molecular Design 30:271−77 doi: 10.1007/s10822-016-9902-7 |
[24] |
Cushman DW, Cheung HS. 1971. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochemical Pharmacology 20:1637−48 doi: 10.1016/0006-2952(71)90292-9 |
[25] |
Yang B, Kallio H. 2002. Effects of harvesting time on triacylglycerols and glycerophospholipids of sea buckthorn (Hippophaë rhamnoides L.) berries of different origins. Journal of Food Composition and Analysis 15:143−57 doi: 10.1006/jfca.2001.1041 |
[26] |
Lee SH, Qian ZJ, Kim SK. 2010. A novel angiotensin I converting enzyme inhibitory peptide from tuna frame protein hydrolysate and its antihypertensive effect in spontaneously hypertensive rats. Food Chemistry 118:96−102 doi: 10.1016/j.foodchem.2009.04.086 |
[27] |
Fu X, Yang H, Ma C, Li X, Li D, et al. 2020. Characterization and inhibitory activities on α-amylase and α-glucosidase of the polysaccharide from blue honeysuckle berries. International Journal of Biological Macromolecules 163:414−22 doi: 10.1016/j.ijbiomac.2020.06.267 |
[28] |
Li L, Cai Y, Sun X, Du X, Jiang Z, et al. 2021. Tyrosinase inhibition by p-coumaric acid ethyl ester identified from camellia pollen. Food Science & Nutrition 9:389−400 doi: 10.1002/fsn3.2004 |
[29] |
Wang C, Tian J, Wang Q. 2011. ACE inhibitory and antihypertensive properties of apricot almond meal hydrolysate. European Food Research and Technology 232:549−56 doi: 10.1007/s00217-010-1411-7 |
[30] |
Ciesarová Z, Murkovic M, Cejpek K, Kreps F, Tobolková B, et al. 2020. Why is sea buckthorn (Hippophae rhamnoides L.) so exceptional? A review. Food Research International 133:109170 doi: 10.1016/j.foodres.2020.109170 |
[31] |
Zhang Z, Wang Y, Dai C, He R, Ma H. 2018. Alkali extraction of rice residue protein isolates: Effects of alkali treatment conditions on lysinoalanine formation and structural characterization of lysinoalanine-containing protein. Food Chemistry 261:176−83 doi: 10.1016/j.foodchem.2018.04.027 |
[32] |
Ghribi AM, Gafsi IM, Blecker C, Danthine S, Attia H, et al. 2015. Effect of drying methods on physico-chemical and functional properties of chickpea protein concentrates. Journal of Food Engineering 165:179−88 doi: 10.1016/j.jfoodeng.2015.06.021 |
[33] |
Hu Y, Que T, Fang Z, Liu W, Chen S, et al. 2013. Effect of Different Drying Methods on the Protein and Product Quality of Hairtail Fish Meat Gel. Drying Technology 31:1707−14 doi: 10.1080/07373937.2013.794831 |
[34] |
Suetsuna K, Nakano T. 2000. Identification of an antihypertensive peptide from peptic digest of wakame (Undaria pinnatifida). The Journal of Nutritional Biochemistry 11:450−54 doi: 10.1016/S0955-2863(00)00110-8 |
[35] |
Cheung HS, Wang FL, Ondetti MA, Sabo EF, Cushman DW. 1980. Binding of peptide substrates and inhibitors of angiotensin-converting enzyme. Importance of the COOH-terminal dipeptide sequence. Journal of Biological Chemistry 255:401−7 |
[36] |
Hayes M, Mora L, Hussey K, Aluko RE. 2016. Boarfish protein recovery using the pH-shift process and generation of protein hydrolysates with ACE-I and antihypertensive bioactivities in spontaneously hypertensive rats. Innovative Food Science & Emerging Technologies 37:253−60 doi: 10.1016/j.ifset.2016.03.014 |
[37] |
Badertscher M, Bühlmann P, Pretsch E. 2009. Structure determination of organic compounds: Tables of Spectral Data. 4th Edition. Heidelberg: Springer Berlin. doi: 10.1007/978-3-540-93810-1 |
[38] |
Ma FF, Wang H, Wei CK, Thakur K, Wei ZJ, et al. 2018. Three novel ACE inhibitory peptides isolated from Ginkgo biloba seeds: purification, inhibitory kinetic and mechanism. Frontiers in Pharmacology 9:1579 doi: 10.3389/fphar.2018.01579 |
[39] |
Toopcham T, Mes JJ, Wichers HJ, Roytrakul S, Yongsawatdigul J. 2017. Bioavailability of angiotensin I-converting enzyme (ACE) inhibitory peptides derived from Virgibacillus halodenitrificans SK1-3-7 proteinases hydrolyzed tilapia muscle proteins. Food Chemistry 220:190−97 doi: 10.1016/j.foodchem.2016.09.183 |
[40] |
Zhang Y, Pan D, Yang Z, Gao X, Dang Y. 2021. Angiotensin I-Converting enzyme (ACE) inhibitory and dipeptidyl Peptidase-4 (DPP-IV) inhibitory activity of umami peptides from Ruditapes philippinarum. LWT 144:111265 doi: 10.1016/j.lwt.2021.111265 |
[41] |
Chen J, Ryu B, Zhang Y, Liang P, Li C, et al. 2020. Comparison of an angiotensin-I-converting enzyme inhibitory peptide from tilapia (Oreochromis niloticus) with captopril: inhibition kinetics, in vivo effect, simulated gastrointestinal digestion and a molecular docking study. Journal of the Science of Food and Agriculture 100:315−24 doi: 10.1002/jsfa.10041 |
[42] |
Quirós A, Ramos M, Muguerza B, Delgado MA, Miguel M, et al. 2007. Identification of novel antihypertensive peptides in milk fermented with Enterococcus faecalis. International Dairy Journal 17:33−41 doi: 10.1016/j.idairyj.2005.12.011 |
[43] |
Iroyukifujita H, Eiichiyokoyama K, Yoshikawa M. 2000. Classification and Antihypertensive Activity of Angiotensin I-Converting Enzyme Inhibitory Peptides Derived from Food Proteins. Journal of Food Science 65:564−69 doi: 10.1111/j.1365-2621.2000.tb16049.x |
[44] |
Natesh R, Schwager SLU, Sturrock ED, Acharya KR. 2003. Crystal structure of the human angiotensin-converting enzyme-lisinopril complex. Nature 421:551−54 doi: 10.1038/nature01370 |
[45] |
Sánchez-Rivera L, Ares I, Miralles B, Gómez-Ruiz JÁ, Recio I, et al. 2014. Bioavailability and Kinetics of the Antihypertensive Casein-Derived Peptide HLPLP in Rats. Journal of Agricultural and Food Chemistry 62:11869−75 doi: 10.1021/jf5035256 |
[46] |
Wu J, Aluko RE, Nakai S. 2006. Structural requirements of angiotensin I-converting enzyme inhibitory peptides: quantitative structure−activity relationship study of di- and tripeptides. Journal of Agricultural and Food Chemistry 54:732−38 doi: 10.1021/jf051263l |
[47] |
Wu J, Liao W, Udenigwe CC. 2017. Revisiting the mechanisms of ACE inhibitory peptides from food proteins. Trends in Food Science & Technology 69:214−19 doi: 10.1016/j.jpgs.2017.07.011 |
[48] |
Li M, Fan W, Xu Y. 2021. Identification of angiotensin converting enzyme (ACE) inhibitory and antioxidant peptides derived from Pixian broad bean paste. LWT 151:112221 doi: 10.1016/j.lwt.2021.112221 |
[49] |
Fan H, Wang J, Liao W, Jiang X, Wu J. 2019. Identification and Characterization of Gastrointestinal-Resistant Angiotensin-Converting Enzyme Inhibitory Peptides from Egg White Proteins. Journal of Agricultural and Food Chemistry 67:7147−56 doi: 10.1021/acs.jafc.9b01071 |
[50] |
Fan H, Wu J. 2021. Purification and identification of novel ACE inhibitory and ACE2 upregulating peptides from spent hen muscle proteins. Food Chemistry 345:128867 doi: 10.1016/j.foodchem.2020.128867 |
[51] |
Ma T, Fu Q, Mei Q, Tu Z, Zhang L. 2021. Extraction optimization and screening of angiotensin-converting enzyme inhibitory peptides from Channa striatus through bioaffinity ultrafiltration coupled with LC-Orbitrap-MS/MS and molecular docking. Food Chemistry 354:129589 doi: 10.1016/j.foodchem.2021.129589 |
[52] |
Wei D, Fan WL, Xu Y. 2021. Identification of water-soluble peptides in distilled spent grain and its angiotensin converting enzyme (ACE) inhibitory activity based on UPLC-Q-TOF-MS and proteomics analysis. Food Chemistry 353:129521 doi: 10.1016/j.foodchem.2021.129521 |
[53] |
Lu Y, Wang Y, Huang D, Bian Z, Lu P, et al. 2021. Inhibitory mechanism of angiotensin-converting enzyme inhibitory peptides from black tea. Journal of Zhejiang University: Science 22:575−89 doi: 10.1631/jzus.B2000520 |