[1]

Thomidis T, Prodromou I, Zambounis A. 2019. Occurrence of Diaporthe ambigua Nitschke causing postharvest fruit rot on kiwifruit in Chrysoupoli Kavala, Greece. Journal of Plant Pathology 101:1295−96

doi: 10.1007/s42161-019-00356-w
[2]

Anfang M, Shani E. 2021. Transport mechanisms of plant hormones. Current Opinion in Plant Biology 63:102055

doi: 10.1016/j.pbi.2021.102055
[3]

Jodder J. 2020. miRNA-mediated regulation of auxin signaling pathway during plant development and stress responses. Journal of Biosciences 45:91

doi: 10.1007/s12038-020-00062-1
[4]

Monte I. 2023. Jasmonates and salicylic acid: evolution of defense hormones in land plants. Current Opinion in Plant Biology 76:102470

doi: 10.1016/j.pbi.2023.102470
[5]

Dai HY, Zhang XK, Bi Y, Chen D, Long XN, et al. 2024. Improvement of Panax notoginseng saponin accumulation triggered by methyl jasmonate under arbuscular mycorrhizal fungi. Frontiers in Plant Science 15:1360919

doi: 10.3389/fpls.2024.1360919
[6]

Deshi V, Homa F, Ghatak A, Aftab MA, Mir H, et al. 2022. Exogenous methyl jasmonate modulates antioxidant activities and delays pericarp browning in litchi. Physiology and Molecular Biology of Plant 28(8):1561−69

doi: 10.1007/s12298-022-01230-3
[7]

Jeyasri R, Muthuramalingam P, Karthick K, Shin H, Choi SH, et al. 2023. Methyl jasmonate and salicylic acid as powerful elicitors for enhancing the production of secondary metabolites in medicinal plants: an updated review. Plant Cell, Tissue and Organ Culture (PCTOC) 153(3):447−58

doi: 10.1007/s11240-023-02485-8
[8]

Valenzuela-Riffo F, Zúñiga PE, Morales-Quintana L, Lolas M, Cáceres M, et al. 2020. Priming of defense systems and upregulation of MYC2 and JAZ1 genes after Botrytis cinerea inoculation in methyl jasmonate-treated strawberry fruits. Plants 9(4):447

doi: 10.3390/plants9040447
[9]

Nakajima N, Inoue H, Koshita Y. 2021. Effects of exogenous methyl jasmonate and light condition on grape berry coloration and endogenous abscisic acid content. Journal of Pesticide Science 46(4):322−32

doi: 10.1584/jpestics.D21-027
[10]

He Y, Liu C, Zhu L, Fu M, Sun Y, et al. 2021. Jasmonic acid plays a pivotal role in pollen development and fertility regulation in different types of P(T)GMS rice lines. International Journal of Molecular Sciences 22(15):7926

doi: 10.3390/ijms22157926
[11]

Ahammed GJ, Li Z, Chen J, Dong Y, Qu K, et al. 2024. Reactive oxygen species signaling in melatonin-mediated plant stress response. Plant Physiology and Biochemistry 207:108398

doi: 10.1016/j.plaphy.2024.108398
[12]

Das P, Agarwala N, Gill SS, Varshney RK. 2023. Emerging role of plant long non coding RNAs (lncRNAs) in salinity stress response. Plant Stress 10:100265

doi: 10.1016/j.stress.2023.100265
[13]

Noori A, Hasanuzzaman M, Roychowdhury R, Sarraf M, Afzal S, et al. 2024. Silver nanoparticles in plant health: physiological response to phytotoxicity and oxidative stress. Plant Physiology and Biochemistry 209:108538

doi: 10.1016/j.plaphy.2024.108538
[14]

Liu T, Xu J, Li J, Hu X. 2019. NO is involved in JA- and H2O2 -mediated ALA-induced oxidative stress tolerance at low temperatures in tomato. Environmental and Experimental Botany 161:334−43

doi: 10.1016/j.envexpbot.2018.10.020
[15]

Huguet-Robert V, Sulpice R, Lefort C, Maerskalck V, Emery N, et al. 2003. The suppression of osmoinduced proline response of Brassica napus L. var oleifera leaf discs by polyunsaturated fatty acids and methyl-jasmonate. Plant Science 164(1):119−27

doi: 10.1016/S0168-9452(02)00343-6
[16]

Gao X, Yang Q, Minami C, Matsuura H, Kimura A, et al. 2003. Inhibitory effect of salicylhydroxamic acid on theobroxide-induced potato tuber formation. Plant Science 165(5):993−99

doi: 10.1016/S0168-9452(03)00280-2
[17]

Sircar D, Cardoso HG, Mukherjee C, Mitra A, Arnholdt-Schmitt B. 2012. Alternative oxidase (AOX) and phenolic metabolism in methyl jasmonate-treated hairy root cultures of Daucus carota L. Journal of Plant Physiology 169(7):657−63

doi: 10.1016/j.jplph.2011.11.019
[18]

Zhou J, Xu Z, Sun H, Zhang H. 2019. Smoke-isolated butenolide elicits tanshinone I production in endophytic fungus Trichoderma atroviride D16 from Salvia miltiorrhiza. South African Journal of Botany 124:1−4

doi: 10.1016/j.sajb.2019.04.005
[19]

Su J, Peng T, Bai M, Bai H, Li H, et al. 2022. Transcriptome and metabolome analyses provide insights into the flavonoid accumulation in peels of Citrus reticulata 'Chachi'. Molecules 27(19):6476

doi: 10.3390/molecules27196476
[20]

Yan M, Nicolet J. 2023. Specificity models in MAPK cascade signaling. FEBS Open Bio 13(7):1177−92

doi: 10.1002/2211-5463.13619
[21]

Tang J, Wu M, Zhang J, Li G, Yang L. 2021. Botrytis cinerea G protein β subunit Bcgb1 controls growth, development and virulence by regulating cAMP signaling and MAPK signaling. Journal of Fungi 7(6):431

doi: 10.3390/jof7060431
[22]

Malle S, Eskandari M, Morrison M, Belzile F. 2020. Genome-wide association identifies several QTLs controlling cysteine and methionine content in soybean seed including some promising candidate genes. Scientific Reports 10:21812

doi: 10.1038/s41598-020-78907-w
[23]

Yang P, Li Z, Wu C, Luo Y, Li J, et al. 2019. Identification of differentially expressed genes involved in the molecular mechanism of pericarp elongation and differences in sucrose and starch accumulation between vegetable and grain pea (Pisum sativum L.). International Journal of Molecular Science 20(24):6135

doi: 10.3390/ijms20246135
[24]

Dominguez PG, Niittylä T. 2022. Mobile forms of carbon in trees: metabolism and transport. Tree Physiology 42(3):458−87

doi: 10.1093/treephys/tpab123
[25]

Iqbal A, Dong Q, Wang X, Gui H, Zhang H, et al. 2020. Transcriptome analysis reveals differences in key genes and pathways regulating carbon and nitrogen metabolism in cotton genotypes under N starvation and resupply. International Journal of Molecular Sciences 21(4):1500

doi: 10.3390/ijms21041500
[26]

Fang Y, Coulter JA, Wu J, Liu L, Li X, et al. 2021. Identification of differentially expressed genes involved in amino acid and lipid accumulation of winter turnip rape (Brassica rapa L.) in response to cold stress. PLoS One 16(2):e0245494

doi: 10.1371/journal.pone.0245494