[1] |
Johny LC, Suresh PV. 2022. Complete genome sequencing and strain characterization of a novel marine Bacillus velezensis FTL7 with a potential broad inhibitory spectrum against foodborne pathogens. World Journal of Microbiology and Biotechnology 38(9):164 doi: 10.1007/s11274-022-03351-z |
[2] |
Cao Y, Pi H, Chandrangsu P, Li Y, Wang Y, Zhou H, et al. 2018. Antagonism of two plant-growth promoting Bacillus velezensis isolates against Ralstonia solanacearum and Fusarium oxysporum. Scientific Reports 8:4360 doi: 10.1038/s41598-018-22782-z |
[3] |
Ma Y, Rajkumar M, Zhang C, Freitas H. 2016. Beneficial role of bacterial endophytes in heavy metal phytoremediation. Journal of Environmental Management 174:14−25 doi: 10.1016/j.jenvman.2016.02.047 |
[4] |
Basu A, Prasad P, Das SN, Kalam S, Sayyed RZ, et al. 2021. Plant Growth Promoting Rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints, and prospects. Sustainability 13(3):1140 doi: 10.3390/su13031140 |
[5] |
Saeed Q, Wang X, Haider FU, Kučerik J, Mumtaz MZ, et al. 2021. Rhizosphere bacteria in plant growth promotion, biocontrol, and bioremediation of contaminated sites: a comprehensive review of effects and mechanisms. International Journal of Molecular Sciences 22(19):10529 doi: 10.3390/ijms221910529 |
[6] |
Dunlap CA, Kim SJ, Kwon SW, Rooney AP. 2016. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and 'Bacillus oryzicola' are later heterotypic synonyms of Bacillus velezensis based on phylogenomics. International Journal of Systematic and Evolutionary Microbiology 66(3):1212−17 doi: 10.1099/ijsem.0.000858 |
[7] |
Kannan C, Divya M, Rekha G, Barbadikar KM, Maruthi P, et al. 2022. Whole genome sequencing data of native isolates of Bacillus and Trichoderma having potential biocontrol and plant growth promotion activities in rice. Data in Brief 41:107923 doi: 10.1016/j.dib.2022.107923 |
[8] |
Vanama S, Pesari M, Rajendran G, Gali UD, Rathod S, et al. 2023. Correlation of the effect of native bioagents on soil properties and their influence on stem rot disease of rice. Sustainability 15(15):11768 doi: 10.3390/su151511768 |
[9] |
Vanama S, Raja Gopalan NS, Pesari M, Baskar M, Gali UD, et al. 2024. Native bio-control agents from the rice fields of Telangana, India: characterization and unveiling the potential against stem rot and false smut diseases of rice. World Journal of Microbiology and Biotechnology 40:2 doi: 10.1007/s11274-023-03782-2 |
[10] |
Fan B, Blom J, Klenk HP, Borriss R. 2017. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an "Operational Group B. amyloliquefaciens" within the B. subtilis species complex. Frontiers in Microbiology 8:22 doi: 10.3389/fmicb.2017.00022 |
[11] |
Rabbee MF, Ali MS, Choi J, Hwang BS, Jeong SC, et al. 2019. Bacillus velezensis: a valuable member of bioactive molecules within plant microbiomes. Molecules 24(6):1046 doi: 10.3390/molecules24061046 |
[12] |
Anjali, Kumar S, Korra T, Thakur R, Arutselvan R, et al. 2023. Role of plant secondary metabolites in defence and transcriptional regulation in response to biotic stress. Plant Stress 8:100154 doi: 10.1016/j.stress.2023.100154 |
[13] |
de los Santos Villalobos S, Robles RI, Parra Cota FI, Larsen J, Lozano P, et al. 2019. Bacillus cabrialesii sp. nov., an endophytic plant growth promoting bacterium isolated from wheat (Triticum turgidum subsp. durum) in the Yaqui Valley, Mexico. International Journal of Systematic and Evolutionary Microbiology 69:3939−45 doi: 10.1099/ijsem.0.003711 |
[14] |
Villa-Rodriguez E, Moreno-Ulloa A, Castro-Longoria E, Parra-Cota FI, de los Santos-Villalobos S. 2021. Integrated omics approaches for deciphering antifungal metabolites produced by a novel Bacillus species, B. cabrialesii TE3T, against the spot blotch disease of wheat (Triticum turgidum L. subsp. durum). Microbiological Research 251:126826 doi: 10.1016/j.micres.2021.126826 |
[15] |
Sur S, Romo TD, Grossfield A. 2018. Selectivity and mechanism of Fengycin, an antimicrobial lipopeptide from molecular dynamics. The Journal of Physical Chemistry B 122(8):2219−26 doi: 10.1021/acs.jpcb.7b11889 |
[16] |
Kannan C, Mishra D, Rekha G, Maruthi P, Shaik H, et al. 2021. Diversity analysis of antagonistic microbes against bacterial leaf and fungal sheath blight diseases of rice. Egyptian Journal of Biological Pest Control 31(1):115 doi: 10.1186/s41938-021-00462-x |
[17] |
Bertels F, Silander OK, Pachkov M, Rainey PB, Van Nimwegen E. 2014. Automated reconstruction of whole-genome phylogenies from short-sequence reads. Molecular Biology and Evolution 31(5):1077−88 doi: 10.1093/molbev/msu088 |
[18] |
Galardini M, Biondi EG, Bazzicalupo M, Mengoni A. 2011. CONTIGuator: a bacterial genomes finishing tool for structural insights on draft genomes. Source Code for Biology and Medicine 6:11 doi: 10.1186/1751-0473-6-11 |
[19] |
Darling ACE, Mau B, Blattner FR, Perna NT. 2004. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Research 14(7):1394−403 doi: 10.1101/gr.2289704 |
[20] |
Meier-Kolthoff JP, Klenk HP, Göker M. 2014. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. International Journal of Systematic and Evolutionary Microbiology 64(Pt 2):352−56 doi: 10.1099/ijs.0.056994-0 |
[21] |
Tanizawa Y, Fujisawa T, Arita M, Nakamura Y. 2019. Generating publication-ready prokaryotic genome annotations with DFAST. In Gene Prediction, ed. Kollmar M. New York, NY: Humana. pp. 215–26. doi: 10.1007/978-1-4939-9173-0_13 |
[22] |
De Jong A, Kuipers OP, Kok J. 2022. FUNAGE-Pro: comprehensive web server for gene set enrichment analysis of prokaryotes. Nucleic Acids Research 50(W1):W330−W336 doi: 10.1093/nar/gkac441 |
[23] |
Wang M, Goh YX, Tai C, Wang H, Deng Z, et al. 2022. VRprofile2: detection of antibiotic resistance-associated mobilome in bacterial pathogens. Nucleic Acids Research 50(W1):W768−W773 doi: 10.1093/nar/gkac321 |
[24] |
Alkhnbashi OS, Mitrofanov A, Bonidia R, Raden M, Tran VD, et al. 2021. CRISPRloci: comprehensive and accurate annotation of CRISPR-Cas systems. Nucleic Acids Research 49(W1):W125−W130 doi: 10.1093/nar/gkab456 |
[25] |
Medema MH, Blin K, Cimermancic P, De Jager V, Zakrzewski P, et al. 2011. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Research 39:W339−W346 doi: 10.1093/nar/gkr466 |
[26] |
Van Heel AJ, De Jong A, Song C, Viel JH, Kok J, et al. 2018. BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Research 46(W1):W278−W281 doi: 10.1093/nar/gky383 |
[27] |
Eichinger V, Nussbaumer T, Platzer A, Jehl MA, Arnold R, et al. 2016. EffectiveDB—Updates and novel features for a better annotation of bacterial secreted proteins and Type III, IV, VI secretion systems. Nucleic Acids Research 44(D1):D669−D674 doi: 10.1093/nar/gkv1269 |
[28] |
Patz S, Gautam A, Becker M, Ruppel S, Rodríguez-Palenzuela P, et al. 2021. PLaBAse: a comprehensive web resource for analyzing the plant growth-promoting potential of plant-associated bacteria. bioRxiv preprint doi: 10.1101/2021.12.13.472471 |
[29] |
Beier S, Thiel T, Münch T, Scholz U, Mascher M. 2017. MISA-web: a web server for microsatellite prediction. Bioinformatics 33(16):2583−85 doi: 10.1093/bioinformatics/btx198 |
[30] |
You FM, Huo N, Gu YQ, Luo MC, Ma Y, et al. 2008. BatchPrimer3: a high throughput web application for PCR and sequencing primer design. BMC Bioinformatics 9:253 doi: 10.1186/1471-2105-9-253 |
[31] |
Syberg-Olsen MJ, Garber AI, Keeling PJ, McCutcheon JP, Husnik F. 2022. Pseudofinder: detection of pseudogenes in prokaryotic genomes. Molecular Biology and Evolution 39(7):msac153 doi: 10.1093/molbev/msac153 |
[32] |
Lerat E, Ochman H. 2004. Ψ-Φ: exploring the outer limits of bacterial pseudogenes. Genome Research 14(11):2273−78 doi: 10.1101/gr.2925604 |
[33] |
Costa SC, Schmitz AM, Jahufar FF, Boyd JD, Cho MY, et al. 2012. A new means to identify type 3 secreted effectors: functionally interchangeable class IB chaperones recognize a conserved sequence. mBio 3(1):e00243-11 doi: 10.1128/mBio.00243-11 |
[34] |
Wu L, Wu H, Chen L, Yu X, Borriss R, et al. 2015. Difficidin and bacilysin from Bacillus amyloliquefaciens FZB42 have antibacterial activity against Xanthomonas oryzae rice pathogens. Scientific Reports 5:12975 doi: 10.1038/srep12975 |
[35] |
Pylro VS, Dias ACF, Andreote FD, de Mello Varani A, Leite LR, Andreote CCF, et al. 2019. Closed genome sequence of Bacillus paralicheniformis strain CBMAI 1303, a bacterium applied for phytopathogen biocontrol. Microbiology Resource Announcements 8:3e01507-18 doi: 10.1128/MRA.01507-18 |
[36] |
Ramírez-Cariño HF, Guadarrama-Mendoza PC, Sánchez-López V, Cuervo-Parra JA, Ramírez-Reyes T, et al. 2020. Biocontrol of Alternaria alternata and Fusarium oxysporum by Trichoderma asperelloides and Bacillus paralicheniformis in tomato plants. Antonie Van Leeuwenhoek 113(9):1247−61 doi: 10.1007/s10482-020-01433-2 |
[37] |
Kim YS, Lee Y, Cheon W, Park J, Kwon HT, Balaraju K, et al. 2021. Characterization of Bacillus velezensis AK-0 as a biocontrol agent against apple bitter rot caused by Colletotrichum gloeosporioides. Scientific Reports 11(1):626 doi: 10.1038/s41598-020-80231-2 |
[38] |
Huang L, Li QC, Hou Y, Li GQ, Yang JY, et al. 2017. Bacillus velezensis strain HYEB5-6 as a potential biocontrol agent against anthracnose on Euonymus japonicus. Biocontrol Science and Technology 27(5):636−53 doi: 10.1080/09583157.2017.1319910 |
[39] |
de Jesus Silva F, Ferreira LC, Campos VP, Cruz-Magalhães V, Barros AF, et al. 2019. Complete genome sequence of the biocontrol agent Bacillus velezensis UFLA258 and its comparison with related species: diversity within the commons. Genome Biology and Evolution 11(10):2818−23 doi: 10.1093/gbe/evz208 |
[40] |
Hoff G, Arias AA, Boubsi F, Pršic J, Meyer T, et al. 2021. Surfactin stimulated by pectin molecular patterns and root exudates acts as a key driver of the Bacillus-plant mutualistic interaction. mBio 12:e01774-21 doi: 10.1128/mBio.01774-21 |
[41] |
Patil PG, Sharma J, Nanjundappa M, Singh NV, Bohra A, et al. 2022. Identification and validation of SSR markers for Xanthomonas axonopodis pv. punicae an incitant of bacterial blight of pomegranate. 3 Biotech 12(7):153 doi: 10.1007/s13205-022-03209-z |