[1] |
Rai PK. 2019. Heavy metals/metalloids remediation from wastewater using free floating macrophytes of a natural wetland. Environmental Technology & Innovation 15:100393 doi: 10.1016/j.eti.2019.100393 |
[2] |
Haider FU, Cai L, Coulter JA, Cheema SA, Jun W, et al. 2021. Cadmium toxicity in plants: impacts and remediation strategies. Ecotoxicology and Environmental Safety 211:111887 doi: 10.1016/j.ecoenv.2020.111887 |
[3] |
Ghori NH, Ghori T, Hayat MQ, Imadi SR, Gul A, et al. 2019. Heavy metal stress and responses in plants. International Journal of Environmental Science and Technology 16(3):1807−28 doi: 10.1007/s13762-019-02215-8 |
[4] |
Petrovic D, Krivokapic S. 2020. The effect of Cu, Zn, Cd, and Pb accumulation on biochemical parameters (proline, chlorophyll) in the water caltrop (Trapa natans L.), lake skadar, Montenegro. Plants 9(10):1287 doi: 10.3390/plants9101287 |
[5] |
Rizwan M, Ali S, Adrees M, Ibrahim M, Tsang DCW, et al. 2017. A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. Chemosphere 182:90−105 doi: 10.1016/j.chemosphere.2017.05.013 |
[6] |
Abbas T, Rizwan M, Ali S, Adrees M, Zia-ur-Rehman M, et al. 2018. Effect of biochar on alleviation of cadmium toxicity in wheat (Triticum aestivum L.) grown on Cd-contaminated saline soil. Environmental Science and Pollution Research 25:25668−80 doi: 10.1007/s11356-017-8987-4 |
[7] |
Madheshiya P, Gupta GS, Sahoo A, Tiwari S. 2023. Role of elevated ozone on development and metabolite contents of lemongrass [Cymbopogon flexuosus (Steud.) (Wats.)]. Metabolites 13(5):597 doi: 10.3390/metabo13050597 |
[8] |
Nazar R, Iqbal N, Masood A, Khan MIR, Syeed S, et al. 2012. Cadmium toxicity in plants and role of mineral nutrients in its alleviation. American Journal of Plant Sciences 3:1476−89 doi: 10.4236/ajps.2012.310178 |
[9] |
Bojórquez C, Frías Espericueta MG, Voltolina D. 2016. Removal of cadmium and lead by adapted strains of Pseudomonas aeruginosa and Enterobacter cloacae. Revista Internacional De Contaminación Ambiental 32(4):407−12 doi: 10.20937/rica.2016.32.04.04 |
[10] |
Samreen T, Humaira, Shah HU, Ullah S, Javid M. 2017. Zinc effect on growth rate, chlorophyll, protein and mineral contents of hydroponically grown mung beans plant (Vigna radiata). Arabian Journal of Chemistry 10:S1802−S1807 doi: 10.1016/j.arabjc.2013.07.005 |
[11] |
Noulas C, Tziouvalekas M, Karyotis T. 2018. Zinc in soils, water and food crops. Journal of Trace Elements in Medicine and Biology 49:252−60 doi: 10.1016/j.jtemb.2018.02.009 |
[12] |
Zaheer IE, Ali S, Saleem MH, Yousaf HS, Malik A, et al. 2022. Combined application of zinc and iron-lysine and its effects on morpho-physiological traits, antioxidant capacity and chromium uptake in rapeseed (Brassica napus L.). PLoS One 17:e0262140 doi: 10.1371/journal.pone.0262140 |
[13] |
Kaur H, Garg N. 2021. Zinc toxicity in plants: a review. Planta 253(6):129 doi: 10.1007/s00425-021-03642-z |
[14] |
Zare AA, Khoshgoftarmanesh AH, Malakouti MJ, Bahrami HA, Chaney RL. 2018. Root uptake and shoot accumulation of cadmium by lettuce at various Cd: Zn ratios in nutrient solution. Ecotoxicology and Environmental Safety 148:441−46 doi: 10.1016/j.ecoenv.2017.10.045 |
[15] |
Hart JJ, Welch RM, Norvell WA, Kochian LV. 2002. Transport interactions between cadmium and zinc in roots of bread and durum wheat seedlings. Physiologia Plantarum 116:73−78 doi: 10.1034/j.1399-3054.2002.1160109.x |
[16] |
Cherif J, Mediouni C, Ben Ammar W, Jemal F. 2011. Interactions of zinc and cadmium toxicity in their effects on growth and in antioxidative systems in tomato plants (Solanum lycopersicum). Journal of Environmental Sciences 23(5):837−44 doi: 10.1016/s1001-0742(10)60415-9 |
[17] |
Küpper H, Kochian LV. 2010. Transcriptional regulation of metal transport genes and mineral nutrition during acclimatization to cadmium and zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population). New Phytologist 185:114−29 doi: 10.1111/j.1469-8137.2009.03051.x |
[18] |
Palusińska M, Barabasz A, Kozak K, Papierniak A, Maślińska K, et al. 2020. Zn/Cd status-dependent accumulation of Zn and Cd in root parts in tobacco is accompanied by specific expression of ZIP genes. BMC Plant Biology 20:37 doi: 10.1186/s12870-020-2255-3 |
[19] |
Harris NS, Taylor GJ. 2001. Remobilization of cadmium in maturing shoots of near isogenic lines of durum wheat that differ in grain cadmium accumulation. Journal of Experimental Botany 52(360):1473−81 doi: 10.1093/jexbot/52.360.1473 |
[20] |
Garg N, Singh S. 2018. Arbuscular mycorrhiza Rhizophagus irregularis and silicon modulate growth, proline biosynthesis and yield in Cajanus cajan L. Millsp. (pigeonpea) genotypes under cadmium and zinc stress. Journal of Plant Growth Regulation 37:46−63 doi: 10.1007/s00344-017-9708-4 |
[21] |
Zhang XD, Meng JG, Zhao KX, Chen X, Yang ZM. 2018. Annotation and characterization of Cd-responsive metal transporter genes in rapeseed (Brassica napus). BioMetals 31:107−21 doi: 10.1007/s10534-017-0072-4 |
[22] |
Yadav G, Tiwari S. 2021. Determination of EC50 of Cd and evaluation of growth and biochemical response of Palak plants (Beta Vulgaris L.) to different Cd treatments. Journal of Scientific & Industrial Research 80:491−98 doi: 10.56042/jsir.v80i6.46404 |
[23] |
MacLachlan S, Zalik S. 1963. Plastid structure, chlorophyll concentration, and free amino acid composition of a chlorophyll mutant of barley. Canadian Journal of Botany 41(7):1053−62 doi: 10.1139/b63-088 |
[24] |
Duxbury AC, Yentsch CS. 1956. Plankton pigment monographs. Journal of Marine Research 15:19−101 |
[25] |
Heath RL, Packer L. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125:189−98 doi: 10.1016/0003-9861(68)90654-1 |
[26] |
Elstner EF, Heupel A. 1976. Inhibition of nitrite formation from hydroxyl ammonium chloride: a simple assay for superoxide dismutase. Analytical Biochemistry 70:616−20 doi: 10.1016/0003-2697(76)90488-7 |
[27] |
Alexieva V, Sergiev I, Mapelli S, Karanov E. 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell & Environment 24(12):1337−44 doi: 10.1046/j.1365-3040.2001.00778.x |
[28] |
Fridovich I. 1975. Superoxide dismutases. Annual Review of Biochemistry 44:147−59 doi: 10.1146/annurev.bi.44.070175.001051 |
[29] |
Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology 22(5):867−80 doi: 10.1093/oxfordjournals.pcp.a076232 |
[30] |
Aebi H. 1984. Catalase in vitro. Methods in Enzymology 105:121−26 doi: 10.1016/S0076-6879(84)05016-3 |
[31] |
Keller T, Schwager H. 1977. Air pollution and ascorbic acid. Forest Pathology 7(6):338−50 doi: 10.1111/j.1439-0329.1977.tb00603.x |
[32] |
Bray HG, Thorpe WV. 1954. Estimation of phenols. Methods of Biochemical Analysis 1:27−52 |
[33] |
Aravind P, Prasad MNV. 2005. Modulation of cadmium-induced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate-glutathione cycle and glutathione metabolism. Plant Physiology and Biochemistry 43(2):107−16 doi: 10.1016/j.plaphy.2005.01.002 |
[34] |
Bates LS, Waldren RP, Teare ID. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil 39:205−7 doi: 10.1007/BF00018060 |
[35] |
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry 193:265−75 doi: 10.1016/S0021-9258(19)52451-6 |
[36] |
Guo D, Ali A, Ren C, Du J, Li R, et al. 2019. EDTA and organic acids assisted phytoextraction of Cd and Zn from a smelter contaminated soil by potherb mustard (Brassica juncea, Coss) and evaluation of its bioindicators. Ecotoxicology and Environmental Safety 167:396−403 doi: 10.1016/j.ecoenv.2018.10.038 |
[37] |
Manzoor M, Gul I, Kallerhoff J, Arshad M. 2019. Fungi-assisted phytoextraction of lead: tolerance, plant growth–promoting activities and phytoavailability. Environmental Science and Pollution Research 26(23):23788−97 doi: 10.1007/s11356-019-05656-3 |
[38] |
El Rasafi T, Oukarroum A, Haddioui A, Song H, Kwon EE, et al. 2022. Cadmium stress in plants: a critical review of the effects, mechanisms, and tolerance strategies. Critical Reviews in Environmental Science and Technology 52(5):675−726 doi: 10.1080/10643389.2020.1835435 |
[39] |
Moradi R, Pourghasemian N, Naghizadeh M. 2019. Effect of beeswax waste biochar on growth, physiology and cadmium uptake in saffron. Journal of Cleaner Production 229:1251−61 doi: 10.1016/j.jclepro.2019.05.047 |
[40] |
Rizwan M, Ali S, Abbas T, Zia-Ur-Rehman M, Hannan F, et al. 2016. Cadmium minimization in wheat: a critical review. Ecotoxicology and Environmental Safety 130:43−53 doi: 10.1016/j.ecoenv.2016.04.001 |
[41] |
Rizvi A, Zaidi A, Ameen F, Ahmed B, AlKahtani MDF, et al. 2020. Heavy metal induced stress on wheat: phytotoxicity and microbiological management. RSC Advances 10(63):38379−403 doi: 10.1039/d0ra05610c |
[42] |
Sarwar N, Ishaq W, Farid G, Shaheen MR, Imran M, et al. 2015. Zinc-cadmium interactions: impact on wheat physiology and mineral acquisition. Ecotoxicology and Environmental Safety 122:528−36 doi: 10.1016/j.ecoenv.2015.09.011 |
[43] |
Zulfiqar U, Ayub A, Hussain S, Ahmad Waraich E, El-Esawi MA, et al. 2022. Cadmium toxicity in plants: recent progress on Morpho-physiological effects and remediation strategies. Journal of Soil Science and Plant Nutrition 22:212−69 doi: 10.1007/s42729-021-00645-3 |
[44] |
Bueno P, Piqueras A. 2002. Effect of transition metals on stress, lipid peroxidation and antioxidant enzyme activities in tobacco cell cultures. Plant Growth Regulation 36(2):161−67 doi: 10.1023/A:1015044705137 |
[45] |
Tammam A, Hatata M, Sadek O. 2016. Effect of Cd and Zn interaction on reactive oxygen species and antioxidant machinery of broad bean plants (Vicia faba L). The Egyptian Journal of Experimental Biology (Botany) 12:193−209 doi: 10.5455/egyjebb.20160819020621 |
[46] |
Noctor G, Reichheld JP, Foyer CH. 2018. ROS-related redox regulation and signaling in plants. Seminars in Cell & Developmental Biology 80:3−12 doi: 10.1016/j.semcdb.2017.07.013 |
[47] |
Zhu Q, Zhang J, Yu H, Li L, Chen X, et al. 2019. Maize Cd-tolerant ZmVTE4 encoding γ-tocopherol-methyl-transferase alleviated Cd-toxicity through its product α-tocopherol. Environmental and Experimental Botany 158:171−79 doi: 10.1016/j.envexpbot.2018.11.019 |
[48] |
Yang F, Zhang H, Wang Y, He G, Wang J, et al. 2021. The role of antioxidant mechanism in photosynthesis under heavy metals Cd or Zn exposure in tobacco leaves. Journal of Plant Interactions 16:354−66 doi: 10.1080/17429145.2021.1961886 |
[49] |
Smirnoff N. 2019. Engineering of metabolic pathways using synthetic enzyme complexes. Plant Physiology 179(3):918−28 doi: 10.1104/pp.18.01280 |
[50] |
Jawad Hassan M, Ali Raza M, Rehman SU, Ansar M, Gitari H, et al. 2020. Effect of cadmium toxicity on growth, oxidative damage, antioxidant defense system and cadmium accumulation in two Sorghum cultivars. Plants 9(11):1575 doi: 10.3390/plants9111575 |
[51] |
Ma D, Sun D, Wang C, Ding H, Qin H, et al. 2017. Physiological responses and yield of wheat plants in zinc-mediated alleviation of drought stress. Frontiers in Plant Science 8:860 doi: 10.3389/fpls.2017.00860 |
[52] |
Tsonev T, Cebola Lidon FJ. 2012. Zinc in plants - an overview. Emirates Journal of Food and Agriculture 24(4):322−33 |
[53] |
Ahanger MA, Morad-Talab N, Abd-Allah EF, Ahmad P, Hajiboland R. 2016. Plant growth under drought stress: significance of mineral nutrients. In Water Stress and Crop Plants: A Sustainable Approach, ed. Ahmad P. US: John Wiley & Sons, Ltd. pp. 649−68. doi: 10.1002/9781119054450.ch37 |
[54] |
Zhang H, Xu Z, Guo K, Huo Y, He G, et al. 2020. Toxic effects of heavy metal Cd and Zn on chlorophyll, carotenoid metabolism and photosynthetic function in tobacco leaves revealed by physiological and proteomics analysis. Ecotoxicology and Environmental Safety 202:110856 doi: 10.1016/j.ecoenv.2020.110856 |