[1]

Zhang S, Yang Y, Li J, Qin J, Zhang W, et al. 2018. Physiological diversity of orchids. Plant Diversity 40:196−208

doi: 10.1016/j.pld.2018.06.003
[2]

Favre-Godal Q, Gourguillon L, Lordel-Madeleine S, Gindro K, Choisy P. 2020. Orchids and their mycorrhizal fungi: an insufficiently explored relationship. Mycorrhiza 30:5−22

doi: 10.1007/s00572-020-00934-2
[3]

Rasmussen HN, Dixon KW, Jersáková J, Těšitelová T. 2015. Germination and seedling establishment in orchids: a complex of requirements. Annals of Botany 116:391−402

doi: 10.1093/aob/mcv087
[4]

Grabka R, d'Entremont TW, Adams SJ, Walker AK, Tanney JB, et al. 2022. Fungal endophytes and their role in agricultural plant protection against pests and pathogens. Plants 11:384

doi: 10.3390/plants11030384
[5]

Tedersoo L, Bahram M, Zobel M. 2020. How mycorrhizal associations drive plant population and community biology. Science 367:eaba1223

doi: 10.1126/science.aba1223
[6]

Santoyo G. 2022. How plants recruit their microbiome? New insights into beneficial interactions. Journal of Advanced Research 40:45−58

doi: 10.1016/j.jare.2021.11.020
[7]

Motomura H, Selosse MA, Martos F, Kagawa A, Yukawa T. 2010. Mycoheterotrophy evolved from mixotrophic ancestors: evidence in Cymbidium (Orchidaceae). Annals of Botany 106:573−81

doi: 10.1093/aob/mcq156
[8]

Jiang W, Wang X, Meng L, Hou M, Wang J, et al. 2024. Integrated microbiology and metabolomics analysis reveal patterns and mechanisms for improving the yield and alkaloid content of Fritillaria cirrhosa by nitrogen fertilization. Industrial Crops and Products 218:119000

doi: 10.1016/j.indcrop.2024.119000
[9]

Bacon CW, Palencia ER, Hinton DM. Abiotic and biotic plant stress-tolerant and beneficial secondary metabolites produced by endophytic Bacillus species. In Plant Microbes Symbiosis: Applied Facets, ed. Arora NK. New Delhi: Springer. pp. 163–77. doi: 10.1007/978-81-322-2068-8_8

[10]

Li Y, Qi G, Xie Z, Li B, Wang R, et al. 2023. The endophytic root microbiome is different in healthy and Ralstonia solanacearum-infected plants and is regulated by a consortium containing beneficial endophytic bacteria. Microbiology Spectrum 11:e02031-22

doi: 10.1128/spectrum.02031-22
[11]

Miliute I, Buzaite O, Baniulis D, Stanys V. 2015. Bacterial endophytes in agricultural crops and their role in stress tolerance: a review. Zemdirbyste-Agriculture 102:465−78

doi: 10.13080/z-a.2015.102.060
[12]

Sarsaiya S, Shi J, Chen J. 2019. A comprehensive review on fungal endophytes and its dynamics on Orchidaceae plants: current research, challenges, and future possibilities. Bioengineered 10:316−34

doi: 10.1080/21655979.2019.1644854
[13]

Santoyo G, Guzmán-Guzmán P, Parra-Cota FI, de los Santos-Villalobos S, del Carmen Orozco-Mosqueda M, et al. 2021. Plant growth stimulation by microbial consortia. Agronomy 11:219

doi: 10.3390/agronomy11020219
[14]

He Y, Yang Z, Li M, Jiang M, Zhan F, et al. 2017. Effects of a dark septate endophyte (DSE) on growth, cadmium content, and physiology in maize under cadmium stress. Environmental Science and Pollution Research 24:18494−504

doi: 10.1007/s11356-017-9459-6
[15]

Rho H, Hsieh M, Kandel SL, Cantillo J, Doty SL, et al. 2018. Do endophytes promote growth of host plants under stress? A meta-analysis on plant stress mitigation by endophytes. Microbial Ecology 75:407−18

doi: 10.1007/s00248-017-1054-3
[16]

Suetsugu K, Yamato M, Matsubayashi J, Tayasu I. 2021. Partial and full mycoheterotrophy in green and albino phenotypes of the slipper orchid Cypripedium debile. Mycorrhiza 31:301−12

doi: 10.1007/s00572-021-01032-7
[17]

Selosse MA, Petrolli R, Mujica MI, Laurent L, Perez-Lamarque B, et al. 2022. The Waiting Room Hypothesis revisited by orchids: were orchid mycorrhizal fungi recruited among root endophytes? Annals of Botany 129:259−70

doi: 10.1093/aob/mcab134
[18]

Chen L, Li S, Li Y, Zhang Y, Bai Y, et al. 2023. Comparative study of Cypripedium plant photosynthetic characteristics from Changbai Mountain. Horticulturae 9:358

doi: 10.3390/horticulturae9030358
[19]

Yang H, Lü G, Jiang H, Shi D, Liu Z. 2017. Diversity and distribution of soil micro-fungi along an elevation gradient on the north slope of Changbai Mountain. Journal of Forestry Research 28:831−39

doi: 10.1007/s11676-016-0344-9
[20]

Zhang J, Liao M, Cheng Y, Feng Y, Ju W, et al. 2022. Comparative chloroplast genomics of seven endangered Cypripedium species and phylogenetic relationships of Orchidaceae. Frontiers in Plant Science 13:911702

doi: 10.3389/fpls.2022.911702
[21]

Li Z, Wang Y, Mu L. 2022. How does deforestation affect the growth of Cypripedium (Orchidaceae) species? A simulation experiment in Northeast China. Forests 13:166

doi: 10.3390/f13020166
[22]

Edgar RC. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods 10:996−98

doi: 10.1038/nmeth.2604
[23]

Kuczynski J, Stombaugh J, Walters WA, González A, Caporaso JG, et al. 2012. Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Current Protocols in Microbiology 27:1E.5.1−1E.5.20

doi: 10.1002/9780471729259.mc01e05s27
[24]

Oksanen J, Guillaume BF, Kindt R, Legendre P, Minchin PR, et al. 2013. Vegan: Community Ecology Package. R Package Version 2:321−26

[25]

Chen H, Boutros PC. 2011. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics 12:35

doi: 10.1186/1471-2105-12-35
[26]

Lozupone C, Hamady M, Knight R. 2006. UniFrac – an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics 7:371

doi: 10.1186/1471-2105-7-371
[27]

Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, et al. 2011. Metagenomic biomarker discovery and explanation. Genome Biology 12:R60

doi: 10.1186/gb-2011-12-6-r60
[28]

Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, et al. 2020. PICRUSt2 for prediction of metagenome functions. Nature Biotechnology 38:685−88

doi: 10.1038/s41587-020-0548-6
[29]

Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, et al. 2016. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology 20:241−48

doi: 10.1016/j.funeco.2015.06.006
[30]

Wickham H. 2011. ggplot2. WIREs Computational Statistics 3:180−85

doi: 10.1002/wics.147
[31]

Kanehisa M, Sato Y, Morishima K. 2016. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. Journal of Molecular Biology 428:726−31

doi: 10.1016/j.jmb.2015.11.006
[32]

Kaur J, Phillips C, Sharma J. 2021. Host population size is linked to orchid mycorrhizal fungal communities in roots and soil, which are shaped by microenvironment. Mycorrhiza 31(1):17−30

doi: 10.1007/s00572-020-00993-5
[33]

Freestone MW, Swarts ND, Reiter N, Tomlinson S, Sussmilch FC, et al. 2021. Continental-scale distribution and diversity of Ceratobasidium orchid mycorrhizal fungi in Australia. Annals of Botany 128(3):329−43

doi: 10.1093/aob/mcab067
[34]

Yuan L, Yang Z, Li S, Hu H, Huang J. 2010. Mycorrhizal specificity, preference, and plasticity of six slipper orchids from South Western China. Mycorrhiza 20:559−68

doi: 10.1007/s00572-010-0307-5
[35]

Shefferson RP, Taylor DL, Weiß M, Garnica S. McCormick MK, et al. 2007. The evolutionary history of mycorrhizal specificity among lady's slipper orchids. Evolution 61:1380−90

doi: 10.1111/j.1558-5646.2007.00112.x
[36]

Shefferson RP, Weiß M, Kull T, Taylor DL. 2005. High specificity generally characterizes mycorrhizal association in rare lady's slipper orchids, genus Cypripedium. Molecular Ecology 14:613−26

doi: 10.1111/j.1365-294X.2005.02424.x
[37]

Chen Y, Gao Y, Song L, Zhao Z, Guo S, et al. 2019. Mycorrhizal fungal community composition in seven orchid species inhabiting Song Mountain, Beijing, China. Science China Life Sciences 62:838−47

doi: 10.1007/s11427-018-9471-x
[38]

Waud M, Busschaert P, Ruyters S, Jacquemyn H, Lievens B. 2014. Impact of primer choice on characterization of orchid mycorrhizal communities using 454 pyrosequencing. Molecular Ecology Resources 14:679−99

doi: 10.1111/1755-0998.12229
[39]

Bernard N. 1904. Le champignon endophyte des orchidées. Comptes Rendus de l'Academie Des Sciences 138:828−30

[40]

Taylor DL, Bruns TD, Leake JR, Read DJ. 2002. Mycorrhizal specificity and function in myco-heterotrophic plants. In Mycorrhizal Ecology, vol 157, eds van der Heijden MGA, Sanders IR. Berlin, Heidelberg: Springer. pp. 375–413. doi: 10.1007/978-3-540-38364-2_15

[41]

Cho G, Gang GH, Jung HY, Kwak YS. 2022. Exploration of mycobiota in Cypripedium japonicum, an endangered species. Mycobiology 50:142−49

doi: 10.1080/12298093.2022.2064409
[42]

Zhang B, Li X, Li G, Wang Q, Wang M. 2022. Cadophora species from marine glaciers in the Qinghai-Tibet Plateau: an example of unsuspected hidden biodiversity. IMA Fungus 13:15

doi: 10.1186/s43008-022-00102-5
[43]

Berthelot C, Leyval C, Chalot M, Blaudez D. 2019. Interactions between dark septate endophytes, ectomycorrhizal fungi and root pathogens in vitro. FEMS Microbiology Letters 366:fnz158

doi: 10.1093/femsle/fnz158
[44]

Maciá-Vicente JG, Piepenbring M, Koukol O. 2020. Brassicaceous roots as an unexpected diversity hot-spot of helotialean endophytes. IMA Fungus 11:16

doi: 10.1186/s43008-020-00036-w
[45]

Gaber DA, Berthelot C, Blaudez D, Kovács GM, Franken P. 2023. Impact of dark septate endophytes on salt stress alleviation of tomato plants. Frontiers in Microbiology 14:1124879

doi: 10.3389/fmicb.2023.1124879
[46]

Olanrewaju OS, Babalola OO. 2019. Streptomyces: implications and interactions in plant growth promotion. Applied Microbiology and Biotechnology 103:1179−88

doi: 10.1007/s00253-018-09577-y
[47]

Santoyo G, Moreno-Hagelsieb G, del Carmen Orozco-Mosqueda M, Glick BR. 2016. Plant growth-promoting bacterial endophytes. Microbiological Research 183:92−99

doi: 10.1016/j.micres.2015.11.008
[48]

Goryluk-Salmonowicz A, Orzeszko-Rywka A, Piórek M, Rekosz-Burlaga H, Otłowska A, et al. 2018. Plant growth promoting bacterial endophytes isolated from Polish herbal plants. Acta Scientiarum Polonorum Hortorum Cultus 17:101−10

[49]

Egamberdieva D, Shurigin V, Alaylar B, Wirth S, Bellingrath-Kimura SD. 2020. Bacterial endophytes from horseradish (Armoracia rusticana G. Gaertn., B. Mey.&Scherb.) with antimicrobial efficacy against pathogens. Plant, Soil and Environment 66:309−16

doi: 10.17221/137/2020-PSE
[50]

Jacquemyn H, Brys R, Merckx VSFT, Waud M, Lievens B, et al. 2014. Coexisting orchid species have distinct mycorrhizal communities and display strong spatial segregation. New Phytologist 202:616−27

doi: 10.1111/nph.12640
[51]

Kothe E, Turnau K. 2018. Mycorrhizosphere communication: mycorrhizal fungi and endophytic fungus-plant interactions. Frontiers in Microbiology 9:3015

doi: 10.3389/fmicb.2018.03015
[52]

Huang X, Chaparro JM, Reardon KF, Zhang R, Shen Q, et al. 2014. Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92:267−75

doi: 10.1139/cjb-2013-0225
[53]

Li T, Yang W, Wu S, Selosse MA, Gao J. 2021. Progress and prospects of mycorrhizal fungal diversity in orchids. Frontiers in Plant Science 12:646325

doi: 10.3389/fpls.2021.646325
[54]

Li M, Song Z, Li Z, Qiao R, Zhang P, et al. 2022. Populus root exudates are associated with rhizosphere microbial communities and symbiotic patterns. Frontiers in Microbiology 13:1042944

doi: 10.3389/fmicb.2022.1042944