[1]

Yu Y, Hao F, Yuan Z, Ye Y, Chen Y. 2008. Effects of salt stress on the germination of several turfgrass. Guangdong Agricultural Science 44(10):21−22,36

doi: 10.16768/j.issn.1004-874x.2008.10.040
[2]

Chen G, Li D, Zhang Z, Du H. 1996. Comparative studies of effect of salt stress on Lolium perenne and Poa pratensis seed germination. Pratacultural Science 13:41−44,47

[3]

Wang N, Li H. 2011. Research on salt tolerance of cool-season turfgrass. Hubei Agricultural Sciences 50:2047−51

doi: 10.14088/j.cnki.issn0439-8114.2011.10.049
[4]

Zhang T, Liu X, Li Z, Jing S, Dong L, et al. 2015. Effects of NaCl stress on growth and photosynthetic physiology of Zoysia japonica. Acta Agrestia Sinica 23:539−48

doi: 10.11733/j.issn.1007-0435.2015.03.016
[5]

Dudeck AE, Peacock CH. 1985. Effects of salinity on seashore paspalum turfgrasses. Agronomy Journal 77:47−50

doi: 10.2134/agronj1985.00021962007700010012x
[6]

Hu L, Huang Z, Liu S, Fu J. 2012. Growth response and gene expression in antioxidant-related enzymes in two bermudagrass genotypes differing in salt tolerance. Journal of the American Society for Horticultural Science 137:134−43

doi: 10.21273/JASHS.137.3.134
[7]

Zhang X, Chen C, Li Y. 2007. Effect of NaCl stress on activities of protective enzymes and lipid peroxidation of two cool-season turfgrass varieties. Northern Horticulture 31:173−75

[8]

Yang F. 2011. Effect of several kinds of sodium salt on seed germination of Festuca arundinacea. Seed 30:104−05

doi: 10.16590/j.cnki.1001-4705.2011.11.077
[9]

Shen Y, Lan J, Xie Y. 2009. Study on the effect of NaCl stress on tall fescue germination. Seed 28:44−47

doi: 10.16590/j.cnki.1001-4705.2009.12.077
[10]

Hu L, Li H, Pang H, Fu J. 2012. Responses of antioxidant gene, protein and enzymes to salinity stress in two genotypes of perennial ryegrass (Lolium perenne) differing in salt tolerance. Journal of Plant Physiology 169:146−56

doi: 10.1016/j.jplph.2011.08.020
[11]

Hu T, Li H, Zhang X, Luo H, Fu J. 2011. Toxic effect of NaCl on ion metabolism, antioxidative enzymes and gene expression of perennial ryegrass. Ecotoxicology and Environmental Safety 74:2050−56

doi: 10.1016/j.ecoenv.2011.07.013
[12]

Hu T, Hu L, Zhang X, Zhang P, Zhao Z, et al. 2013. Differential responses of CO2 assimilation, carbohydrate allocation and gene expression to NaCl stress in perennial ryegrass with different salt tolerance. PLoS One 8:e66090

doi: 10.1371/journal.pone.0066090
[13]

Hu T, Yi H, Hu L, Fu J. 2013. Stomatal and metabolic limitations to photosynthesis resulting from NaCl stress in perennial ryegrass genotypes differing in salt tolerance. Journal of the American Society for Horticultural Science 138:350−57

doi: 10.21273/JASHS.138.5.350
[14]

Marcum KB, Anderson SJ, Engelke MC. 1998. Salt gland Ion secretion: a salinity tolerance mechanism among five zoysiagrass species. Crop Science 38:806−10

doi: 10.2135/cropsci1998.0011183X003800030031x
[15]

Li P, Yang Z. 2005. Dynamic effect of nacl on absorption and transportation of K+ and Na+ in Festuca arundinacea. Acta Prataculturae Sinica 14:58−64

doi: 10.3321/j.issn:1004-5759.2005.04.010
[16]

Alshammary SF, Qian YL, Wallner SJ. 2004. Growth response of four turfgrass species to salinity. Agricultural Water Management 66:97−111

doi: 10.1016/j.agwat.2003.11.002
[17]

Hu L, Li H, Chen L, Lou Y, Amombo E, et al. 2015. RNA-seq for gene identification and transcript profiling in relation to root growth of bermudagrass (Cynodon dactylon) under salinity stress. BMC Genomics 16:575

doi: 10.1186/s12864-015-1799-3
[18]

Zhang T. 2014. Effects of NaCl on the growth and physiology of seashore paspalum and zoysia. Thesis. Nanjing Agricultural University, China. doi: 10.7666/d.Y2974845

[19]

Marcum KB, Murdoch CL. 1994. Salinity tolerance mechanisms of six C4 turfgrasses. Journal of the American Society for Horticultural Science 119:779−84

doi: 10.21273/JASHS.119.4.779
[20]

Zhou X, Cao F. 2005. Effects of soil salt stress on the metal ions absorption and distribution in three warm-season turfgrasses. Journal of Nanjing Forestry University 29:31−34

doi: 10.3969/j.issn.1000-2006.2005.06.008
[21]

Yang Z. 2004. The response of tall fescue (Festuca arundinacea Schreb) to NaCl stress. Thesis. China Agricultural University, China. doi: 10.7666/d.y659036

[22]

Zhu Y, He C, Du W, Hu Y, Chen Y. 2007. Effects of exogenous calcium on the seed germination and seedling ions distribution of Festuca arundinacea under salt stress. Transactions of the Chinese Society of Agricultural Engineering 23:133−37

doi: 10.3321/j.issn:1002-6819.2007.11.023
[23]

Jia Y, Li X, Wan L, He F, He D. 2009. The micro-distribution of elements in Distichlis spicata and Festuca arundinacea under salt stress. Scientia Agricultura Sinica 42:1595−600

doi: 10.3864/j.issn.0578-1752.2009.05.012
[24]

Zhang Z, Hu H. 2008. Responses of Zoysia macrostachya to salt stress. Pratacultural Science 25:50−53

doi: 10.3969/j.issn.1001-0629.2008.07.010
[25]

He L, Liu G, Yang J, Li J, Lu Z. 2013. Mitigative effect of root-application of glycine betaine on salt stress of Lolium perenne seedlings. Acta Pedologica Sinica 50:1055−60

doi: 10.11766/trxb201301220044
[26]

Uddin MK, Juraimi AS, Ismail MR, Hossain MA, Othman R, et al. 2012. Physiological and growth responses of six turfgrass species relative to salinity tolerance. The Scientific World Journal 2012:905468

[27]

Zhang P, Yang P, Zhang Z, Han B, Wang W, et al. 2014. Isolation and characterization of a buffalograss (Buchloe dactyloides) dehydration responsive element binding transcription factor, BdDREB2. Gene 536:123−28

doi: 10.1016/j.gene.2013.11.060
[28]

Hu L, Zhang P, Jiang Y, Fu J. 2015. Metabolomic analysis revealed differential adaptation to salinity and alkalinity stress in kentucky bluegrass (Poa pratensis). Plant Molecular Biology Reporter 33:56−68

doi: 10.1007/s11105-014-0722-4
[29]

Hu T, Jin Y, Li H, Amombo E, Fu J. 2016. Stress memory induced transcriptional and metabolic changes of perennial ryegrass (Lolium perenne) in response to salt stress. Physiologia Plantarum 156:54−69

doi: 10.1111/ppl.12342
[30]

Hu L, Chen L, Liu L, Lou Y, Amombo E, et al. 2015. Metabolic acclimation of source and sink tissues to salinity stress in bermudagrass (Cynodon dactylon). Physiologia Plantarum 155:166−79

doi: 10.1111/ppl.12312
[31]

Liu T, Zhuang L, Huang B. 2019. Metabolic adjustment and gene expression for root sodium transport and calcium signaling contribute to salt tolerance in agrostis grass species. Plant and Soil 443:219−32

doi: 10.1007/s11104-019-04140-8
[32]

Xia G, Wang J. 2009. Effects of NaCl on Zoysia matrella. Journal of Hebei Agricultural University 32:30−33

doi: 10.3969/j.issn.1000-1573.2009.01.008
[33]

Ye T, Shi H, Wang Y, Yang F, Chan Z. 2015. Contrasting proteomic and metabolomic responses of bermudagrass to drought and salt stresses. Frontiers in Plant Science 7:1694

doi: 10.3389/fpls.2016.01694
[34]

Liu Y, Du H, He X, Huang B, Wang Z. 2012. Identification of differentially expressed salt-responsive proteins in roots of two perennial grass species contrasting in salinity tolerance. Journal of Plant Physiology 169:117−26

doi: 10.1016/j.jplph.2011.08.019
[35]

Wang H, Fang T, Li X, Xie Y, Wang W, et al. 2024. Whole-genome sequencing of allotetraploid bermudagrass reveals the origin of Cynodon and candidate genes for salt tolerance. The Plant Journal 118:2068−84

doi: 10.1111/tpj.16729
[36]

Xu B, Han L, Yao N, Wang Y, Cheng X, et al. 2008. Salt tolerance analysis of transgenic Kentucky bluegrass with CMO-BADH double gene and CMO gene. Acta Agrestia Sinica 16:353−58

doi: 10.3969/j.issn.1007-0435.2008.04.007
[37]

Wang G, Mi F, Liu J, Dong S, Huo X, et al. 2007. Studies on the expression of exogenous p5CS gene in transgenic wheatgrasses (Agropyron cristatum × A. desertorum cv. 'Hycrest-Mengnong') and drought resistance. Acta Agriculturae Boreali-Sinica 22:33−36

[38]

Guo Q. 2013. The role of PtSOS1, PtAKT1 in salt tolerance of halophyte Puccinellia tenuiflora. Thesis. Lanzhou University, China.

[39]

Tian L, Huang C, Yu R, Liang RT, Li Z, et al. 2006. Overexpression AtNHX1 confers salt-tolerance of transgenic tall fescue. African Journal of Biotechnology 5:1041−44

[40]

Li M, Li Y, Li H, Wu G. 2011. Improvement of paper mulberry tolerance to abiotic stresses by ectopic expression of tall fescue FaDREB1. Tree Physiology 32:104−13

doi: 10.1093/treephys/tpr124
[41]

Xu N, Gu H, Cheng Y, Zhang X, Ding C. 2011. Evaluation of salt tolerance of Italian ryegrass at the germinating period. Pratacultural Science 28:1820−24

[42]

Uddin MK, Juraimi AS. 2013. Salinity tolerance turfgrass: history and prospects. The Scientific World Journal 2013:409413

doi: 10.1155/2013/409413
[43]

Zhou X, Huang C, Zhang X, Liu G. 2010. Preliminary screening of bermuda grass (Cynodon dactylon) for salt-tolerance. Chinese Journal of Tropical Agriculture 30:20−24

doi: 10.3969/j.issn.1009-2196.2010.04.006
[44]

Liu Y, Wang Z. 2007. Screening for salinity tolerance of cool-season turfgrass varieties (selections). Journal of Shanghai Jiaotong University (Agricultural Science) 25:367−73

doi: 10.3969/j.issn.1671-9964.2007.04.008
[45]

Yang X. 2017. Evaluation of salt tolerance and ion regulation mechanism of knotweed plants. Thesis. Nanjing Agricultural University, China.

[46]

Amombo E, Li X, Wang G, Fan S, Shao A, et al. 2018. Screening of diverse tall fescue population for salinity tolerance based on SSR marker-physiological trait association. Euphytica 214:220

doi: 10.1007/s10681-018-2281-5
[47]

Chen L, Huang G. 2009. Effect of paclobutrazal on the salt tolerance of Festuca arundinacea. Pratacultural Science 26:177−80

doi: 10.3969/j.issn.1001-0629.2009.08.032
[48]

Li Z, Liu R, Zhang X, Zhao X, Liu M, et al. 2022. Effects of exogenous abscisic acid on enhancing salt tolerance of Festuca arundinacea. Northern Horticulture 46:66−75

[49]

Dong H, Duan X, Chang Z. 2015. The effect of Exogenous salicylic acid on salt tolerance of perennia ryegrass. Journal of Beijing Forestry University 37:128−35

doi: 10.13332/j.cnki.jbfu.2015.02.001
[50]

Lian J, Yan D, Guo K. 2012. Effects of trehalose on the growth and ion balance of Lolium perenne under NaCl stress in the seedling stage. Anhui Forestry Science and Technology 38:9−12