[1]
|
Yu Y, Hao F, Yuan Z, Ye Y, Chen Y. 2008. Effects of salt stress on the germination of several turfgrass. Guangdong Agricultural Science 44(10):21−22,36 doi: 10.16768/j.issn.1004-874x.2008.10.040
CrossRef Google Scholar
|
[2]
|
Chen G, Li D, Zhang Z, Du H. 1996. Comparative studies of effect of salt stress on Lolium perenne and Poa pratensis seed germination. Pratacultural Science 13:41−44,47
Google Scholar
|
[3]
|
Wang N, Li H. 2011. Research on salt tolerance of cool-season turfgrass. Hubei Agricultural Sciences 50:2047−51 doi: 10.14088/j.cnki.issn0439-8114.2011.10.049
CrossRef Google Scholar
|
[4]
|
Zhang T, Liu X, Li Z, Jing S, Dong L, et al. 2015. Effects of NaCl stress on growth and photosynthetic physiology of Zoysia japonica. Acta Agrestia Sinica 23:539−48 doi: 10.11733/j.issn.1007-0435.2015.03.016
CrossRef Google Scholar
|
[5]
|
Dudeck AE, Peacock CH. 1985. Effects of salinity on seashore paspalum turfgrasses. Agronomy Journal 77:47−50 doi: 10.2134/agronj1985.00021962007700010012x
CrossRef Google Scholar
|
[6]
|
Hu L, Huang Z, Liu S, Fu J. 2012. Growth response and gene expression in antioxidant-related enzymes in two bermudagrass genotypes differing in salt tolerance. Journal of the American Society for Horticultural Science 137:134−43 doi: 10.21273/JASHS.137.3.134
CrossRef Google Scholar
|
[7]
|
Zhang X, Chen C, Li Y. 2007. Effect of NaCl stress on activities of protective enzymes and lipid peroxidation of two cool-season turfgrass varieties. Northern Horticulture 31:173−75
Google Scholar
|
[8]
|
Yang F. 2011. Effect of several kinds of sodium salt on seed germination of Festuca arundinacea. Seed 30:104−05 doi: 10.16590/j.cnki.1001-4705.2011.11.077
CrossRef Google Scholar
|
[9]
|
Shen Y, Lan J, Xie Y. 2009. Study on the effect of NaCl stress on tall fescue germination. Seed 28:44−47 doi: 10.16590/j.cnki.1001-4705.2009.12.077
CrossRef Google Scholar
|
[10]
|
Hu L, Li H, Pang H, Fu J. 2012. Responses of antioxidant gene, protein and enzymes to salinity stress in two genotypes of perennial ryegrass (Lolium perenne) differing in salt tolerance. Journal of Plant Physiology 169:146−56 doi: 10.1016/j.jplph.2011.08.020
CrossRef Google Scholar
|
[11]
|
Hu T, Li H, Zhang X, Luo H, Fu J. 2011. Toxic effect of NaCl on ion metabolism, antioxidative enzymes and gene expression of perennial ryegrass. Ecotoxicology and Environmental Safety 74:2050−56 doi: 10.1016/j.ecoenv.2011.07.013
CrossRef Google Scholar
|
[12]
|
Hu T, Hu L, Zhang X, Zhang P, Zhao Z, et al. 2013. Differential responses of CO2 assimilation, carbohydrate allocation and gene expression to NaCl stress in perennial ryegrass with different salt tolerance. PLoS One 8:e66090 doi: 10.1371/journal.pone.0066090
CrossRef Google Scholar
|
[13]
|
Hu T, Yi H, Hu L, Fu J. 2013. Stomatal and metabolic limitations to photosynthesis resulting from NaCl stress in perennial ryegrass genotypes differing in salt tolerance. Journal of the American Society for Horticultural Science 138:350−57 doi: 10.21273/JASHS.138.5.350
CrossRef Google Scholar
|
[14]
|
Marcum KB, Anderson SJ, Engelke MC. 1998. Salt gland Ion secretion: a salinity tolerance mechanism among five zoysiagrass species. Crop Science 38:806−10 doi: 10.2135/cropsci1998.0011183X003800030031x
CrossRef Google Scholar
|
[15]
|
Li P, Yang Z. 2005. Dynamic effect of nacl on absorption and transportation of K+ and Na+ in Festuca arundinacea. Acta Prataculturae Sinica 14:58−64 doi: 10.3321/j.issn:1004-5759.2005.04.010
CrossRef Google Scholar
|
[16]
|
Alshammary SF, Qian YL, Wallner SJ. 2004. Growth response of four turfgrass species to salinity. Agricultural Water Management 66:97−111 doi: 10.1016/j.agwat.2003.11.002
CrossRef Google Scholar
|
[17]
|
Hu L, Li H, Chen L, Lou Y, Amombo E, et al. 2015. RNA-seq for gene identification and transcript profiling in relation to root growth of bermudagrass (Cynodon dactylon) under salinity stress. BMC Genomics 16:575 doi: 10.1186/s12864-015-1799-3
CrossRef Google Scholar
|
[18]
|
Zhang T. 2014. Effects of NaCl on the growth and physiology of seashore paspalum and zoysia. Thesis. Nanjing Agricultural University, China. doi: 10.7666/d.Y2974845
|
[19]
|
Marcum KB, Murdoch CL. 1994. Salinity tolerance mechanisms of six C4 turfgrasses. Journal of the American Society for Horticultural Science 119:779−84 doi: 10.21273/JASHS.119.4.779
CrossRef Google Scholar
|
[20]
|
Zhou X, Cao F. 2005. Effects of soil salt stress on the metal ions absorption and distribution in three warm-season turfgrasses. Journal of Nanjing Forestry University 29:31−34 doi: 10.3969/j.issn.1000-2006.2005.06.008
CrossRef Google Scholar
|
[21]
|
Yang Z. 2004. The response of tall fescue (Festuca arundinacea Schreb) to NaCl stress. Thesis. China Agricultural University, China. doi: 10.7666/d.y659036
|
[22]
|
Zhu Y, He C, Du W, Hu Y, Chen Y. 2007. Effects of exogenous calcium on the seed germination and seedling ions distribution of Festuca arundinacea under salt stress. Transactions of the Chinese Society of Agricultural Engineering 23:133−37 doi: 10.3321/j.issn:1002-6819.2007.11.023
CrossRef Google Scholar
|
[23]
|
Jia Y, Li X, Wan L, He F, He D. 2009. The micro-distribution of elements in Distichlis spicata and Festuca arundinacea under salt stress. Scientia Agricultura Sinica 42:1595−600 doi: 10.3864/j.issn.0578-1752.2009.05.012
CrossRef Google Scholar
|
[24]
|
Zhang Z, Hu H. 2008. Responses of Zoysia macrostachya to salt stress. Pratacultural Science 25:50−53 doi: 10.3969/j.issn.1001-0629.2008.07.010
CrossRef Google Scholar
|
[25]
|
He L, Liu G, Yang J, Li J, Lu Z. 2013. Mitigative effect of root-application of glycine betaine on salt stress of Lolium perenne seedlings. Acta Pedologica Sinica 50:1055−60 doi: 10.11766/trxb201301220044
CrossRef Google Scholar
|
[26]
|
Uddin MK, Juraimi AS, Ismail MR, Hossain MA, Othman R, et al. 2012. Physiological and growth responses of six turfgrass species relative to salinity tolerance. The Scientific World Journal 2012:905468
Google Scholar
|
[27]
|
Zhang P, Yang P, Zhang Z, Han B, Wang W, et al. 2014. Isolation and characterization of a buffalograss (Buchloe dactyloides) dehydration responsive element binding transcription factor, BdDREB2. Gene 536:123−28 doi: 10.1016/j.gene.2013.11.060
CrossRef Google Scholar
|
[28]
|
Hu L, Zhang P, Jiang Y, Fu J. 2015. Metabolomic analysis revealed differential adaptation to salinity and alkalinity stress in kentucky bluegrass (Poa pratensis). Plant Molecular Biology Reporter 33:56−68 doi: 10.1007/s11105-014-0722-4
CrossRef Google Scholar
|
[29]
|
Hu T, Jin Y, Li H, Amombo E, Fu J. 2016. Stress memory induced transcriptional and metabolic changes of perennial ryegrass (Lolium perenne) in response to salt stress. Physiologia Plantarum 156:54−69 doi: 10.1111/ppl.12342
CrossRef Google Scholar
|
[30]
|
Hu L, Chen L, Liu L, Lou Y, Amombo E, et al. 2015. Metabolic acclimation of source and sink tissues to salinity stress in bermudagrass (Cynodon dactylon). Physiologia Plantarum 155:166−79 doi: 10.1111/ppl.12312
CrossRef Google Scholar
|
[31]
|
Liu T, Zhuang L, Huang B. 2019. Metabolic adjustment and gene expression for root sodium transport and calcium signaling contribute to salt tolerance in agrostis grass species. Plant and Soil 443:219−32 doi: 10.1007/s11104-019-04140-8
CrossRef Google Scholar
|
[32]
|
Xia G, Wang J. 2009. Effects of NaCl on Zoysia matrella. Journal of Hebei Agricultural University 32:30−33 doi: 10.3969/j.issn.1000-1573.2009.01.008
CrossRef Google Scholar
|
[33]
|
Ye T, Shi H, Wang Y, Yang F, Chan Z. 2015. Contrasting proteomic and metabolomic responses of bermudagrass to drought and salt stresses. Frontiers in Plant Science 7:1694 doi: 10.3389/fpls.2016.01694
CrossRef Google Scholar
|
[34]
|
Liu Y, Du H, He X, Huang B, Wang Z. 2012. Identification of differentially expressed salt-responsive proteins in roots of two perennial grass species contrasting in salinity tolerance. Journal of Plant Physiology 169:117−26 doi: 10.1016/j.jplph.2011.08.019
CrossRef Google Scholar
|
[35]
|
Wang H, Fang T, Li X, Xie Y, Wang W, et al. 2024. Whole-genome sequencing of allotetraploid bermudagrass reveals the origin of Cynodon and candidate genes for salt tolerance. The Plant Journal 118:2068−84 doi: 10.1111/tpj.16729
CrossRef Google Scholar
|
[36]
|
Xu B, Han L, Yao N, Wang Y, Cheng X, et al. 2008. Salt tolerance analysis of transgenic Kentucky bluegrass with CMO-BADH double gene and CMO gene. Acta Agrestia Sinica 16:353−58 doi: 10.3969/j.issn.1007-0435.2008.04.007
CrossRef Google Scholar
|
[37]
|
Wang G, Mi F, Liu J, Dong S, Huo X, et al. 2007. Studies on the expression of exogenous p5CS gene in transgenic wheatgrasses (Agropyron cristatum × A. desertorum cv. 'Hycrest-Mengnong') and drought resistance. Acta Agriculturae Boreali-Sinica 22:33−36
Google Scholar
|
[38]
|
Guo Q. 2013. The role of PtSOS1, PtAKT1 in salt tolerance of halophyte Puccinellia tenuiflora. Thesis. Lanzhou University, China.
|
[39]
|
Tian L, Huang C, Yu R, Liang RT, Li Z, et al. 2006. Overexpression AtNHX1 confers salt-tolerance of transgenic tall fescue. African Journal of Biotechnology 5:1041−44
Google Scholar
|
[40]
|
Li M, Li Y, Li H, Wu G. 2011. Improvement of paper mulberry tolerance to abiotic stresses by ectopic expression of tall fescue FaDREB1. Tree Physiology 32:104−13 doi: 10.1093/treephys/tpr124
CrossRef Google Scholar
|
[41]
|
Xu N, Gu H, Cheng Y, Zhang X, Ding C. 2011. Evaluation of salt tolerance of Italian ryegrass at the germinating period. Pratacultural Science 28:1820−24
Google Scholar
|
[42]
|
Uddin MK, Juraimi AS. 2013. Salinity tolerance turfgrass: history and prospects. The Scientific World Journal 2013:409413 doi: 10.1155/2013/409413
CrossRef Google Scholar
|
[43]
|
Zhou X, Huang C, Zhang X, Liu G. 2010. Preliminary screening of bermuda grass (Cynodon dactylon) for salt-tolerance. Chinese Journal of Tropical Agriculture 30:20−24 doi: 10.3969/j.issn.1009-2196.2010.04.006
CrossRef Google Scholar
|
[44]
|
Liu Y, Wang Z. 2007. Screening for salinity tolerance of cool-season turfgrass varieties (selections). Journal of Shanghai Jiaotong University (Agricultural Science) 25:367−73 doi: 10.3969/j.issn.1671-9964.2007.04.008
CrossRef Google Scholar
|
[45]
|
Yang X. 2017. Evaluation of salt tolerance and ion regulation mechanism of knotweed plants. Thesis. Nanjing Agricultural University, China.
|
[46]
|
Amombo E, Li X, Wang G, Fan S, Shao A, et al. 2018. Screening of diverse tall fescue population for salinity tolerance based on SSR marker-physiological trait association. Euphytica 214:220 doi: 10.1007/s10681-018-2281-5
CrossRef Google Scholar
|
[47]
|
Chen L, Huang G. 2009. Effect of paclobutrazal on the salt tolerance of Festuca arundinacea. Pratacultural Science 26:177−80 doi: 10.3969/j.issn.1001-0629.2009.08.032
CrossRef Google Scholar
|
[48]
|
Li Z, Liu R, Zhang X, Zhao X, Liu M, et al. 2022. Effects of exogenous abscisic acid on enhancing salt tolerance of Festuca arundinacea. Northern Horticulture 46:66−75
Google Scholar
|
[49]
|
Dong H, Duan X, Chang Z. 2015. The effect of Exogenous salicylic acid on salt tolerance of perennia ryegrass. Journal of Beijing Forestry University 37:128−35 doi: 10.13332/j.cnki.jbfu.2015.02.001
CrossRef Google Scholar
|
[50]
|
Lian J, Yan D, Guo K. 2012. Effects of trehalose on the growth and ion balance of Lolium perenne under NaCl stress in the seedling stage. Anhui Forestry Science and Technology 38:9−12
Google Scholar
|