[1] |
Christenhusz MJM, Byng JW. 2016. The number of known plants species in the world and its annual increase. Phytotaxa 261(3):201−17 doi: 10.11646/phytotaxa.261.3.1 |
[2] |
Zúñiga-Mayo VM, Gómez-Felipe A, Herrera-Ubaldo H, de Folter S. 2019. Gynoecium development: networks in Arabidopsis and beyond. Journal of Experimental Botany 70(5):1447−60 doi: 10.1093/jxb/erz026 |
[3] |
Baroux C, Grossniklaus U. 2019. Seeds-An evolutionary innovation underlying reproductive success in flowering plants. Current Topics in Developmental Biology 131:605−42 doi: 10.1016/bs.ctdb.2018.11.017 |
[4] |
Seymour GB, Østergaard L, Chapman NH, Knapp S, Martin C. 2013. Fruit development and ripening. Annual Review of Plant Biology 64:219−41 doi: 10.1146/annurev-arplant-050312-120057 |
[5] |
Scutt CP, Vinauger-Douard M, Fourquin C, Finet C, Dumas C. 2006. An evolutionary perspective on the regulation of carpel development. Journal of Experimental Botany 57(10):2143−52 doi: 10.1093/jxb/erj188 |
[6] |
Dilcher DL, Sun G, Ji Q, Li H. 2007. An early infructescence Hyrcantha decussata (comb. nov. ) from the Yixian Formation in northeastern China. Proceedings of the National Academy of Sciences of the United States of America 104(22):9370−74 doi: 10.1073/pnas.0703497104 |
[7] |
Bomblies K, Higgins JD, Yant L. 2015. Meiosis evolves: adaptation to external and internal environments. New Phytologist 208(2):306−23 doi: 10.1111/nph.13499 |
[8] |
Ferrandiz C. 2011. Fruit structure and diversity. In Encyclopedia of Life Sciences. John Wiley & Sons. pp. 1−7. doi: 10.1002/9780470015902.a0002044.pub2 |
[9] |
Nathan R, Katul GG, Horn HS, Thomas SM, Oren R, et al. 2002. Mechanisms of long-distance dispersal of seeds by wind. Nature 418:409−13 doi: 10.1038/nature00844 |
[10] |
Tiffney BH. 2004. Vertebrate dispersal of seed plants through time. Annual Review of Ecology Evolution and Systematics 35:1−29 doi: 10.1146/annurev.ecolsys.34.011802.132535 |
[11] |
Schupp EW, Zwolak R, Jones LR, Snell RS, Beckman NG, et al. 2019. Intrinsic and extrinsic drivers of intraspecific variation in seed dispersal are diverse and pervasive. AoB PLANTS 11(6):plz067 doi: 10.1093/aobpla/plz067 |
[12] |
Smyth DR, Bowman JL, Meyerowitz EM. 1990. Early flower development in Arabidopsis. The Plant Cell 2(8):755−67 doi: 10.1105/tpc.2.8.755 |
[13] |
Roeder AHK, Yanofsky MF. 2006. Fruit development in Arabidopsis. The Arabidopsis Book 2016(4):e0075 doi: 10.1199/tab.0075 |
[14] |
Reyes-Olalde JI, Zuñiga-Mayo VM, Chávez Montes RA, Marsch-Martínez N, de Folter S. 2013. Inside the gynoecium: at the carpel margin. Trends in Plant Science 18(11):644−55 doi: 10.1016/j.tplants.2013.08.002 |
[15] |
Reyes-Olalde JI, de Folter S. 2019. Control of stem cell activity in the carpel margin meristem (CMM) in Arabidopsis. Plant Reproduction 32(2):123−36 doi: 10.1007/s00497-018-00359-0 |
[16] |
Bowman JL, Baum SF, Eshed Y, Putterill J, Alvarez J. 1999. Molecular genetics of gynoecium development in Arabidopsis. Current Topics in Developmental Biology 45:155−205 doi: 10.1016/s0070-2153(08)60316-6 |
[17] |
Luna-García V, Bernal Gallardo JJ, Rethoret-Pasty M, Pasha A, Provart NJ, et al. 2024. A high-resolution gene expression map of the medial and lateral domains of the gynoecium of Arabidopsis. Plant Physiology 195(1):410−29 doi: 10.1093/plphys/kiad658 |
[18] |
Herrera-Ubaldo H, de Folter S. 2022. Gynoecium and fruit development in Arabidopsis. Development 149(5):dev200120 doi: 10.1242/dev.200120 |
[19] |
Marsch-Martínez N, de Folter S. 2016. Hormonal control of the development of the gynoecium. Current Opinion in Plant Biology 29:104−14 doi: 10.1016/j.pbi.2015.12.006 |
[20] |
Gómez-Felipe A, Branchini E, Wang B, Marconi M, Bertrand-Rakusová H, et al. 2024. Two orthogonal differentiation gradients locally coordinate fruit morphogenesis. Nature Communications 15:2912 doi: 10.1038/s41467-024-47325-1 |
[21] |
Sablowski R. 2007. Flowering and determinacy in Arabidopsis. Journal of Experimental Botany 58(5):899−907 doi: 10.1093/jxb/erm002 |
[22] |
Weits DA, Kunkowska AB, Kamps NCW, Portz KMS, Packbier NK, et al. 2019. An apical hypoxic niche sets the pace of shoot meristem activity. Nature 569:714−17 doi: 10.1038/s41586-019-1203-6 |
[23] |
Shang E, Ito T, Sun B. 2019. Control of floral stem cell activity in Arabidopsis. Plant Signaling & Behavior 14(11):1659706 doi: 10.1080/15592324.2019.1659706 |
[24] |
Xu Y, Yamaguchi N, Gan ES, Ito T. 2019. When to stop: an update on molecular mechanisms of floral meristem termination. Journal of Experimental Botany 70(6):1711−18 doi: 10.1093/jxb/erz048 |
[25] |
Coen ES, Meyerowitz EM. 1991. The war of the whorls: genetic interactions controlling flower development. Nature 353:31−37 doi: 10.1038/353031a0 |
[26] |
Irish V. 2017. The ABC model of floral development. Current Biology 27(17):R887−R890 doi: 10.1016/j.cub.2017.03.045 |
[27] |
Bowman JL, Drews GN, Meyerowitz EM. 1991. Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specific cell types late in flower development. The Plant Cell 3(8):749−58 doi: 10.1105/tpc.3.8.749 |
[28] |
Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF. 2000. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200−3 doi: 10.1038/35012103 |
[29] |
Mayer KF, Schoof H, Haecker A, Lenhard M, Jürgens G, et al. 1998. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95(6):805−15 doi: 10.1016/S0092-8674(00)81703-1 |
[30] |
Fletcher JC, Brand U, Running MP, Simon R, Meyerowitz EM. 1999. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283(5409):1911−14 doi: 10.1126/science.283.5409.1911 |
[31] |
Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R. 2000. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289(5479):617−19 doi: 10.1126/science.289.5479.617 |
[32] |
Schoof H, Lenhard M, Haecker A, Mayer KF, Jürgens G, et al. 2000. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100(6):635−44 doi: 10.1016/S0092-8674(00)80700-X |
[33] |
Lohmann JU, Hong RL, Hobe M, Busch MA, Parcy F, et al. 2001. A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell 105(6):793−803 doi: 10.1016/S0092-8674(01)00384-1 |
[34] |
Das P, Ito T, Wellmer F, Vernoux T, Dedieu A, et al. 2009. Floral stem cell termination involves the direct regulation of AGAMOUS by PERIANTHIA. Development 136(10):1605−11 doi: 10.1242/dev.035436 |
[35] |
Maier AT, Stehling-Sun S, Wollmann H, Demar M, Hong RL, et al. 2009. Dual roles of the bZIP transcription factor PERIANTHIA in the control of floral architecture and homeotic gene expression. Development 136(10):1613−20 doi: 10.1242/dev.033647 |
[36] |
Lenhard M, Bohnert A, Jürgens G, Laux T. 2001. Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell 105(6):805−14 doi: 10.1016/S0092-8674(01)00390-7 |
[37] |
Liu X, Kim YJ, Müller R, Yumul RE, Liu C, et al. 2011. AGAMOUS terminates floral stem cell maintenance in Arabidopsis by directly repressing WUSCHEL through recruitment of Polycomb Group proteins. The Plant Cell 23(10):3654−70 doi: 10.1105/tpc.111.091538 |
[38] |
Guo L, Cao X, Liu Y, Li J, Li Y, et al. 2018. A chromatin loop represses WUSCHEL expression in Arabidopsis. The Plant Journal 94(6):1083−1097 doi: 10.1111/tpj.13921 |
[39] |
Kwaśniewska K, Breathnach C, Fitzsimons C, Goslin K, Thomson B, et al. 2021. Expression of KNUCKLES in the stem cell domain is required for its function in the control of floral meristem activity in Arabidopsis. Frontiers in Plant Science 12:704351 doi: 10.3389/fpls.2021.704351 |
[40] |
Bollier N, Sicard A, Leblond J, Latrasse D, Gonzalez N, et al. 2018. At-MINI ZINC FINGER2 and Sl-INHIBITOR OF MERISTEM ACTIVITY, a conserved missing link in the regulation of floral meristem termination in Arabidopsis and Tomato. The Plant Cell 30(1):83−100 doi: 10.1105/tpc.17.00653 |
[41] |
Gorham SR, Weiner AI, Yamadi M, Krogan NT. 2018. HISTONE DEACETYLASE 19 and the flowering time gene FD maintain reproductive meristem identity in an age-dependent manner. Journal of Experimental Botany 69(20):4757−71 doi: 10.1093/jxb/ery239 |
[42] |
Baile F, Merini W, Hidalgo I, Calonje M. 2020. Dissection of PRC1 and PRC2 recruitment in Arabidopsis connects EAR repressome to PRC2 anchoring. BioRxiv Preprint doi: 10.1101/2020.08.28.271999 |
[43] |
Pelayo MA, Morishita F, Sawada H, Matsushita K, Iimura H, et al. 2023. AGAMOUS regulates various target genes via cell cycle-coupled H3K27me3 dilution in floral meristems and stamens. The Plant Cell 35(8):2821−47 doi: 10.1093/plcell/koad123 |
[44] |
Powell AE, Lenhard M. 2012. Control of organ size in plants. Current Biology 22(9):R360−R367 doi: 10.1016/j.cub.2012.02.010 |
[45] |
Hamant O, Heisler MG, Jönsson H, Krupinski P, Uyttewaal M, et al. 2008. Developmental patterning by mechanical signals in Arabidopsis. Science 322(5908):1650−55 doi: 10.1126/science.1165594 |
[46] |
Perrot-Rechenmann C. 2010. Cellular responses to auxin: division versus expansion. Cold Spring Harbor Perspectives in Biology 2(5):a001446 doi: 10.1101/cshperspect.a001446 |
[47] |
Yamaguchi N, Huang J, Tatsumi Y, Abe M, Sugano SS, et al. 2018. Chromatin-mediated feed-forward auxin biosynthesis in floral meristem determinacy. Nature Communications 9:5290 doi: 10.1038/s41467-018-07763-0 |
[48] |
Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, et al. 2001. A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291(5502):306−9 doi: 10.1126/science.291.5502.306 |
[49] |
Eldridge T, Łangowski Ł, Stacey N, Jantzen F, Moubayidin L, et al. 2016. Fruit shape diversity in the Brassicaceae is generated by varying patterns of anisotropy. Development 143(18):3394−406 doi: 10.1242/dev.135327 |
[50] |
van Berkel K, de Boer RJ, Scheres B, ten Tusscher K. 2013. Polar auxin transport: models and mechanisms. Development 140(11):2253−68 doi: 10.1242/dev.079111 |
[51] |
Abas L, Kolb M, Stadlmann J, Janacek DP, Lukic K, et al. 2021. Naphthylphthalamic acid associates with and inhibits PIN auxin transporters. Proceedings of the National Academy of Sciences of the United States of America 118(1):e2020857118 doi: 10.1073/pnas.2020857118 |
[52] |
Moubayidin L, Ostergaard L. 2014. Dynamic control of auxin distribution imposes a bilateral-to-radial symmetry switch during gynoecium development. Current Biology 24(22):2743−48 doi: 10.1016/j.cub.2014.09.080 |
[53] |
Gälweiler L, Guan C, Müller A, Wisman E, Mendgen K, et al. 1998. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282(5397):2226−30 doi: 10.1126/science.282.5397.2226 |
[54] |
Larsson E, Roberts CJ, Claes AR, Franks RG, Sundberg E. 2014. Polar auxin transport is essential for medial versus lateral tissue specification and vascular-mediated valve outgrowth in Arabidopsis gynoecia. Plant Physiology 166(4):1998−2012 doi: 10.1104/pp.114.245951 |
[55] |
Girin T, Paicu T, Stephenson P, Fuentes S, Körner E, et al. 2011. INDEHISCENT and SPATULA interact to specify carpel and valve margin tissue and thus promote seed dispersal in Arabidopsis. The Plant Cell 23(10):3641−53 doi: 10.1105/tpc.111.090944 |
[56] |
Christensen SK, Dagenais N, Chory J, Weigel D. 2000. Regulation of auxin response by the protein kinase PINOID. Cell 100(4):469−78 doi: 10.1016/S0092-8674(00)80682-0 |
[57] |
Dhonukshe P, Huang F, Galvan-Ampudia CS, Mähönen AP, Kleine-Vehn J, et al. 2010. Plasma membrane-bound AGC3 kinases phosphorylate PIN auxin carriers at TPRXS(N/S) motifs to direct apical PIN recycling. Development 137(19):3245−55 doi: 10.1242/dev.052456 |
[58] |
Friml J, Yang X, Michniewicz M, Weijers D, Quint A, et al. 2004. A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science 306(5697):862−65 doi: 10.1126/science.1100618 |
[59] |
Huang F, Zago MK, Abas L, van Marion A, Galván-Ampudia CS, et al. 2010. Phosphorylation of conserved PIN motifs directs Arabidopsis PIN1 polarity and auxin transport. The Plant Cell 22(4):1129−42 doi: 10.1105/tpc.109.072678 |
[60] |
Tasker-Brown W, Koh SWH, Trozzi N, Maio KA, Jamil I, et al. 2024. An incoherent feed-forward loop involving bHLH transcription factors, Auxin and CYCLIN-Ds regulates style radial symmetry establishment in Arabidopsis. The Plant Journal 119:2885−903 doi: 10.1111/tpj.16959 |
[61] |
Carabelli M, Turchi L, Morelli G, Østergaard L, Ruberti I, et al. 2021. Coordination of biradial-to-radial symmetry and tissue polarity by HD-ZIP II proteins. Nature Communications 12(1):4321 doi: 10.1038/s41467-021-24550-6 |
[62] |
Jiang Y, Curran-French S, Koh SWH, Jamil I, Gu B, et al. 2024. O-glycosylation of the transcription factor SPATULA promotes style development in Arabidopsis. Nature Plants 10(2):283−99 doi: 10.1038/s41477-023-01617-4 |
[63] |
Østergaard L. 2009. Don’t ‘leaf’ now. The making of a fruit. Current Opinion in Plant Biology 2(1):36−41 doi: 10.1016/j.pbi.2008.09.011 |
[64] |
Alvarez JP, Goldshmidt A, Efroni I, Bowman JL, Eshed Y. 2009. The NGATHA distal organ development genes are essential for style specification in Arabidopsis. The Plant Cell 21(5):1373−93 doi: 10.1105/tpc.109.065482 |
[65] |
Ballester P, Martínez-Godoy MA, Ezquerro M, Navarrete-Gómez M, Trigueros M, et al. 2021. A transcriptional complex of NGATHA and bHLH transcription factors directs stigma development in Arabidopsis. The Plant Cell 33(12):3645−57 doi: 10.1093/plcell/koab236 |
[66] |
Cheng Y, Dai X, Zhao Y. 2006. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes & Development 20(13):1790−99 doi: 10.1101/gad.1415106 |
[67] |
Sohlberg JJ, Myrenås M, Kuusk S, Lagercrantz U, Kowalczyk M, et al. 2006. STY1 regulates auxin homeostasis and affects apical-basal patterning of the Arabidopsis gynoecium. The Plant Journal 47(1):112−23 doi: 10.1111/j.1365-313X.2006.02775.x |
[68] |
Martínez-Fernández I, Sanchís S, Marini N, Balanzá V, Ballester P, et al. 2014. The effect of NGATHA altered activity on auxin signaling pathways within the Arabidopsis gynoecium. Frontiers in Plant Science 5:210 |
[69] |
Kepinski S, Leyser O. 2005. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435(7041):446−51 doi: 10.1038/nature03542 |
[70] |
Leyser O. 2018. Auxin signaling. Plant Physiology 176:465−79 doi: 10.1104/pp.17.00765 |
[71] |
Sessions A, Nemhauser JL, McColl A, Roe JL, Feldmann KA, et al. 1997. ETTIN patterns the Arabidopsis floral meristem and reproductive organs. Development 124(22):4481−91 doi: 10.1242/dev.124.22.4481 |
[72] |
Simonini S, Deb J, Moubayidin L, Stephenson P, Valluru M, et al. 2016. A noncanonical auxin-sensing mechanism is required for organ morphogenesis in Arabidopsis. Genes & Development 30(20):2286−96 doi: 10.1101/gad.285361.116 |
[73] |
Kuhn A, Ramans Harborough S, McLaughlin HM, Natarajan B, Verstraeten I, et al. 2020. Direct ETTIN-auxin interaction controls chromatin states in gynoecium development. eLife 9:e51787 doi: 10.7554/eLife.51787 |
[74] |
Simonini S, Bencivenga S, Trick M, Østergaard L. 2017. Auxin-induced modulation of ETTIN activity orchestrates gene expression in Arabidopsis. The Plant Cell 29(8):1864−82 doi: 10.1105/tpc.17.00389 |
[75] |
Wang Y, Wang N, Lan J, Pan Y, Jiang Y, et al. 2024. Arabidopsis transcription factor TCP4 controls the identity of the apical gynoecium. The Plant Cell 36:2668−88 doi: 10.1093/plcell/koae107 |
[76] |
Li W, Huang X, Zou J, Wu J, Jiao H, et al. 2020. Three STIGMA AND STYLE STYLISTs pattern the fine architectures of apical gynoecium and are critical for male gametophyte-pistil interaction. Current Biology 30(23):4780−4788. e5 doi: 10.1016/j.cub.2020.09.006 |
[77] |
Chickarmane VS, Gordon SP, Tarr PT, Heisler MG, Meyerowitz EM. 2012. Cytokinin signaling as a positional cue for patterning the apical-basal axis of the growing Arabidopsis shoot meristem. Proceedings of the National Academy of Sciences of the United States of America 109(10):4002−7 doi: 10.1073/pnas.1200636109 |
[78] |
Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, et al. 2003. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. The Plant Cell 15(11):2532−50 doi: 10.1105/tpc.014928 |
[79] |
Marsch-Martínez N, Ramos-Cruz D, Irepan Reyes-Olalde J, Lozano-Sotomayor P, Zúñiga-Mayo VM, et al. 2012. The role of cytokinin during Arabidopsis gynoecia and fruit morphogenesis and patterning. The Plant Journal 72(2):222−34 doi: 10.1111/j.1365-313X.2012.05062.x |
[80] |
Kang J, Lee Y, Sakakibara H, Martinoia E. 2017. Cytokinin transporters: GO and STOP in Signaling. Trends in Plant Science 22(6):455−61 doi: 10.1016/j.tplants.2017.03.003 |
[81] |
Kuroha T, Tokunaga H, Kojima M, Ueda N, Ishida T, et al. 2009. Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. The Plant Cell 21(10):3152−69 doi: 10.1105/tpc.109.068676 |
[82] |
Kieber JJ, Schaller GE. 2018. Cytokinin signaling in plant development. Development 145(4):dev149344 doi: 10.1242/dev.149344 |
[83] |
Ishida K, Yamashino T, Yokoyama A, Mizuno T. 2008. Three type-B response regulators, ARR1, ARR10 and ARR12, play essential but redundant roles in cytokinin signal transduction throughout the life cycle of Arabidopsis thaliana. Plant And Cell Physiology 49(1):47−57 doi: 10.1093/pcp/pcm165 |
[84] |
Reyes-Olalde JI, Zúñiga-Mayo VM, Serwatowska J, Chavez Montes RA, Lozano-Sotomayor P, et al. 2017. The bHLH transcription factor SPATULA enables cytokinin signaling, and both activate auxin biosynthesis and transport genes at the medial domain of the gynoecium. PLoS Genetics 13(4):e1006726 doi: 10.1371/journal.pgen.1006726 |
[85] |
Bartrina I, Otto E, Strnad M, Werner T, Schmülling T. 2011. Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. The Plant Cell 23(1):69−80 doi: 10.1105/tpc.110.079079 |
[86] |
Aida, M, Ishida, T, Fukaki, H, Fujisawa, H, Tasaka, M. 1997. Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. The Plant Cell 9(6):841−57 doi: 10.1105/tpc.9.6.841 |
[87] |
Laufs P, Peaucelle A, Morin H, Traas J. 2004. MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development 131(17):4311−22 doi: 10.1242/dev.01320 |
[88] |
Kamiuchi Y, Yamamoto K, Furutani M, Tasaka M, Aida M. 2014. The CUC1 and CUC2 genes promote carpel margin meristem formation during Arabidopsis gynoecium development. Frontiers in Plant Science 5:165 doi: 10.3389/fpls.2014.00165 |
[89] |
Hibara KI, Takada S, Tasaka M. 2003. CUC1 gene activates the expression of SAM-related genes to induce adventitious shoot formation. The Plant Journal 36(5):687−96 doi: 10.1046/j.1365-313X.2003.01911.x |
[90] |
Spinelli SV, Martin AP, Viola IL, Gonzalez DH, Palatnik JF. 2011. A mechanistic link between STM and CUC1 during Arabidopsis development. Plant Physiology 156(4):1894−904 doi: 10.1104/pp.111.177709 |
[91] |
Long JA, Moan EI, Medford JI, Barton MK. 1996. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379:66−69 doi: 10.1038/379066a0 |
[92] |
Jasinski S, Piazza P, Craft J, Hay A, Woolley L, et al. 2005. KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Current Biology 15:1560−65 doi: 10.1016/j.cub.2005.07.023 |
[93] |
Yanai O, Shani E, Dolezal K, Tarkowski P, Sablowski R, et al. 2005. Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Current Biology 15(17):1566−71 doi: 10.1016/j.cub.2005.07.060 |
[94] |
Balkunde R, Kitagawa M, Xu XM, Wang J, Jackson D. 2017. SHOOT MERISTEMLESS trafficking controls axillary meristem formation, meristem size and organ boundaries in Arabidopsis. The Plant Journal 90(3):435−46 doi: 10.1111/tpj.13504 |
[95] |
Scofield S, Dewitte W, Murray JAH. 2007. The KNOX gene SHOOT MERISTEMLESS is required for the development of reproductive meristematic tissues in Arabidopsis. The Plant Journal 50(5):767−81 doi: 10.1111/j.1365-313X.2007.03095.x |
[96] |
Groszmann M, Paicu T, Alvarez JP, Swain SM, Smyth DR. 2011. SPATULA and ALCATRAZ, are partially redundant, functionally diverging bHLH genes required for Arabidopsis gynoecium and fruit development. The Plant Journal 68(5):816−29 doi: 10.1111/j.1365-313X.2011.04732.x |
[97] |
Roeder AHK, Ferrándiz C, Yanofsky MF. 2003. The role of the REPLUMLESS homeodomain protein in patterning the Arabidopsis fruit. Current Biology 13(18):1630−35 doi: 10.1016/j.cub.2003.08.027 |
[98] |
Crawford BCW, Ditta G, Yanofsky MF. 2007. The NTT gene is required for transmitting-tract development in carpels of Arabidopsis thaliana. Current Biology 17(13):1101−8 doi: 10.1016/j.cub.2007.05.079 |
[99] |
Marsch-Martínez N, Zúñiga-Mayo VM, Herrera-Ubaldo H, Ouwerkerk PBF, Pablo-Villa J, et al. 2014. The NTT transcription factor promotes replum development in Arabidopsis fruits. The Plant Journal 80(1):69−81 doi: 10.1111/tpj.12617 |
[100] |
Zuñiga-Mayo VM, Baños-Bayardo CR, Díaz-Ramírez D, Marsch-Martínez N, de Folter S. 2018. Conserved and novel responses to cytokinin treatments during flower and fruit development in Brassica napus and Arabidopsis thaliana. Scientific Reports 8(1):6836 doi: 10.1038/s41598-018-25017-3 |
[101] |
Dinneny JR, Weigel D, Yanofsky MF. 2005. A genetic framework for fruit patterning in Arabidopsis thaliana. Development 132(21):4687−96 doi: 10.1242/dev.02062 |
[102] |
Gu Q, Ferrándiz C, Yanofsky MF, Martienssen R. 1998. The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125(8):1509−17 doi: 10.1242/dev.125.8.1509 |
[103] |
Ferrándiz C, Fourquin C. 2014. Role of the FUL-SHP network in the evolution of fruit morphology and function. Journal Of Experimental Botany 65(16):4505−13 doi: 10.1093/jxb/ert479 |
[104] |
Venglat SP, Dumonceaux T, Rozwadowski K, Parnell L, Babic V, et al. 2002. The homeobox gene BREVIPEDICELLUS is a key regulator of inflorescence architecture in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 99(7):4730−35 doi: 10.1073/pnas.072626099 |
[105] |
Crawford BCW, Yanofsky MF. 2011. HALF FILLED promotes reproductive tract development and fertilization efficiency in Arabidopsis thaliana. Development 138(14):2999−3009 doi: 10.1242/dev.067793 |
[106] |
Ripoll JJ, Zhu M, Brocke S, Hon CT, Yanofsky MF, et al. 2019. Growth dynamics of the Arabidopsis fruit is mediated by cell expansion. Proceedings of the National Academy of Sciences of the United States of America 116(50):25333−42 doi: 10.1073/pnas.1914096116 |
[107] |
Bensmihen S, Hanna AI, Langlade NB, Micol JL, Bangham A, et al. 2008. Mutational spaces for leaf shape and size. Hfsp Journal 2(2):110−20 doi: 10.2976/1.2836738 |
[108] |
Roeder AHK, Chickarmane V, Cunha A, Obara B, Manjunath BS, et al. 2010. Variability in the control of cell division underlies sepal epidermal patterning in Arabidopsis thaliana. PLoS Biology 8(5):e1000367 doi: 10.1371/journal.pbio.1000367 |
[109] |
José Ripoll J, Bailey LJ, Mai QA, Wu SL, Hon CT, et al. 2015. microRNA regulation of fruit growth. Nature Plants 1(4):15036 doi: 10.1038/nplants.2015.36 |
[110] |
Sang Q, Vayssières A, Ó'Maoiléidigh DS, Yang X, Vincent C, et al. 2022. MicroRNA172 controls inflorescence meristem size through regulation of APETALA2 in Arabidopsis. New Phytologist 235:356−71 doi: 10.1111/nph.18111 |
[111] |
Di Marzo M, Herrera-Ubaldo H, Caporali E, Novák O, Strnad M, et al. 2020. SEEDSTICK Controls Arabidopsis Fruit Size by Regulating Cytokinin Levels and FRUITFULL. Cell Reports 30(8):2846−2857.e3 doi: 10.1016/j.celrep.2020.01.101 |
[112] |
Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, et al. 2003. Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424:85−88 doi: 10.1038/nature01741 |
[113] |
Ballester P, Ferrándiz C. 2017. Shattering fruits: variations on a dehiscent theme. Current Opinion in Plant Biology 35:68−75 doi: 10.1016/j.pbi.2016.11.008 |
[114] |
Liljegren SJ, Ditta GS, Eshed Y, Savidge B, Bowman JL, et al. 2000. SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404:766−70 doi: 10.1038/35008089 |
[115] |
Lewis MW, Leslie ME, Liljegren SJ. 2006. Plant separation: 50 ways to leave your mother. Current Opinion in Plant Biology 9(1):59−65 doi: 10.1016/j.pbi.2005.11.009 |
[116] |
Liljegren SJ, Roeder AHK, Kempin SA, Gremski K, Østergaard L, et al. 2004. Control of Fruit Patterning in Arabidopsis by GA. Cell 116:843−53 doi: 10.1016/S0092-8674(04)00217-X |
[117] |
Rajani S, Sundaresan V. 2001. The Arabidopsis myc/bHLH gene ALCATRAZ enables cell separation in fruit dehiscence. Current Biology 11(24):1914−22 doi: 10.1016/S0960-9822(01)00593-0 |
[118] |
Ferrándiz C, Liljegren SJ, Yanofsky MF. 2000. Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science 289(5478):436−38 doi: 10.1126/science.289.5478.436 |
[119] |
Chung KS, Lee JH, Lee JS, Ahn JH. 2013. Fruit indehiscence caused by enhanced expression of NO TRANSMITTING TRACT in Arabidopsis thaliana. Molecules and Cells 35(6):519−25 doi: 10.1007/s10059-013-0030-0 |
[120] |
Ripoll JJ, Roeder AHK, Ditta GS, Yanofsky MF. 2011. A novel role for the floral homeotic gene APETALA2 during Arabidopsis fruit development. Development 138(23):5167−76 doi: 10.1242/dev.073031 |
[121] |
Mitsuda N, Ohme-Takagi M. 2009. Functional analysis of transcription factors in Arabidopsis. Plant & Cell Physiology 50(7):1232−48 doi: 10.1093/pcp/pcp075 |
[122] |
Zhong R, Richardson EA, Ye ZH. 2007. Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis. Planta 225(6):1603−11 doi: 10.1007/s00425-007-0498-y |
[123] |
Mitsuda N, Ohme-Takagi M. 2008. NAC transcription factors NST1 and NST3 regulate pod shattering in a partially redundant manner by promoting secondary wall formation after the establishment of tissue identity. The Plant Journal 56:768−78 doi: 10.1111/j.1365-313X.2008.03633.x |
[124] |
Ogawa M, Kay P, Wilson S, Swain SM. 2009. ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE1 (ADPG1), ADPG2, and QUARTET2 are Polygalacturonases required for cell separation during reproductive development in Arabidopsis. The Plant Cell 21(1):216−33 doi: 10.1105/tpc.108.063768 |
[125] |
van Gelderen K, van Rongen M, Liu AA, Otten A, Offringa R. 2016. An INDEHISCENT-controlled auxin response specifies the separation layer in early Arabidopsis fruit. Molecular Plant 9(6):857−69 doi: 10.1016/j.molp.2016.03.005 |
[126] |
Luschnig C, Vert G. 2014. The dynamics of plant plasma membrane proteins: PINs and beyond. Development 141:2924−38 doi: 10.1242/dev.103424 |
[127] |
Sorefan K, Girin T, Liljegren SJ, Ljung K, Robles P, et al. 2009. A regulated auxin minimum is required for seed dispersal in Arabidopsis. Nature 459(7246):583−86 doi: 10.1038/nature07875 |
[128] |
Li XR, Vroomans RMA, Fox S, Grieneisen VA, Østergaard L, et al. 2019. Systems biology approach pinpoints minimum requirements for auxin distribution during fruit opening. Molecular Plant 12(6):863−78 doi: 10.1016/j.molp.2019.05.003 |
[129] |
Arnaud N, Girin T, Sorefan K, Fuentes S, Wood TA et al. 2010. Gibberellins control fruit patterning in Arabidopsis thaliana. Genes & Development 24(19):2127−32 doi: 10.1101/gad.593410 |
[130] |
Balanzà V, Roig-Villanova I, Di Marzo M, Masiero S, Colombo L. 2016. Seed abscission and fruit dehiscence required for seed dispersal rely on similar genetic networks. Development 143(18):3372−81 doi: 10.1242/dev.135202 |
[131] |
Shi B, Felipo-Benavent A, Cerutti G, Galvan-Ampudia C, Jilli L, et al. 2024. A quantitative gibberellin signaling biosensor reveals a role for gibberellins in internode specification at the shoot apical meristem. Nature Communications 15(1):3895 doi: 10.1038/s41467-024-48116-4 |
[132] |
Dong Y, Jantzen F, Stacey N, Łangowski Ł, Moubayidin L, et al. 2019. Regulatory diversification of INDEHISCENT in the Capsella genus directs variation in fruit morphology. Current Biology 29(6):1038−1046.e4 doi: 10.1016/j.cub.2019.01.057 |
[133] |
Dong Y, Østergaard L. 2019. Fruit development and diversification. Current Biology 29(16):R781−R778 doi: 10.1016/j.cub.2019.07.010 |