[1]
|
Christenhusz MJM, Byng JW. 2016. The number of known plants species in the world and its annual increase. Phytotaxa 261(3):201−17 doi: 10.11646/phytotaxa.261.3.1
CrossRef Google Scholar
|
[2]
|
Zúñiga-Mayo VM, Gómez-Felipe A, Herrera-Ubaldo H, de Folter S. 2019. Gynoecium development: networks in Arabidopsis and beyond. Journal of Experimental Botany 70(5):1447−60 doi: 10.1093/jxb/erz026
CrossRef Google Scholar
|
[3]
|
Baroux C, Grossniklaus U. 2019. Seeds-An evolutionary innovation underlying reproductive success in flowering plants. Current Topics in Developmental Biology 131:605−42 doi: 10.1016/bs.ctdb.2018.11.017
CrossRef Google Scholar
|
[4]
|
Seymour GB, Østergaard L, Chapman NH, Knapp S, Martin C. 2013. Fruit development and ripening. Annual Review of Plant Biology 64:219−41 doi: 10.1146/annurev-arplant-050312-120057
CrossRef Google Scholar
|
[5]
|
Scutt CP, Vinauger-Douard M, Fourquin C, Finet C, Dumas C. 2006. An evolutionary perspective on the regulation of carpel development. Journal of Experimental Botany 57(10):2143−52 doi: 10.1093/jxb/erj188
CrossRef Google Scholar
|
[6]
|
Dilcher DL, Sun G, Ji Q, Li H. 2007. An early infructescence Hyrcantha decussata (comb. nov. ) from the Yixian Formation in northeastern China. Proceedings of the National Academy of Sciences of the United States of America 104(22):9370−74 doi: 10.1073/pnas.0703497104
CrossRef Google Scholar
|
[7]
|
Bomblies K, Higgins JD, Yant L. 2015. Meiosis evolves: adaptation to external and internal environments. New Phytologist 208(2):306−23 doi: 10.1111/nph.13499
CrossRef Google Scholar
|
[8]
|
Ferrandiz C. 2011. Fruit structure and diversity. In Encyclopedia of Life Sciences. John Wiley & Sons. pp. 1−7. doi: 10.1002/9780470015902.a0002044.pub2
|
[9]
|
Nathan R, Katul GG, Horn HS, Thomas SM, Oren R, et al. 2002. Mechanisms of long-distance dispersal of seeds by wind. Nature 418:409−13 doi: 10.1038/nature00844
CrossRef Google Scholar
|
[10]
|
Tiffney BH. 2004. Vertebrate dispersal of seed plants through time. Annual Review of Ecology Evolution and Systematics 35:1−29 doi: 10.1146/annurev.ecolsys.34.011802.132535
CrossRef Google Scholar
|
[11]
|
Schupp EW, Zwolak R, Jones LR, Snell RS, Beckman NG, et al. 2019. Intrinsic and extrinsic drivers of intraspecific variation in seed dispersal are diverse and pervasive. AoB PLANTS 11(6):plz067 doi: 10.1093/aobpla/plz067
CrossRef Google Scholar
|
[12]
|
Smyth DR, Bowman JL, Meyerowitz EM. 1990. Early flower development in Arabidopsis. The Plant Cell 2(8):755−67 doi: 10.1105/tpc.2.8.755
CrossRef Google Scholar
|
[13]
|
Roeder AHK, Yanofsky MF. 2006. Fruit development in Arabidopsis. The Arabidopsis Book 2016(4):e0075 doi: 10.1199/tab.0075
CrossRef Google Scholar
|
[14]
|
Reyes-Olalde JI, Zuñiga-Mayo VM, Chávez Montes RA, Marsch-Martínez N, de Folter S. 2013. Inside the gynoecium: at the carpel margin. Trends in Plant Science 18(11):644−55 doi: 10.1016/j.tplants.2013.08.002
CrossRef Google Scholar
|
[15]
|
Reyes-Olalde JI, de Folter S. 2019. Control of stem cell activity in the carpel margin meristem (CMM) in Arabidopsis. Plant Reproduction 32(2):123−36 doi: 10.1007/s00497-018-00359-0
CrossRef Google Scholar
|
[16]
|
Bowman JL, Baum SF, Eshed Y, Putterill J, Alvarez J. 1999. Molecular genetics of gynoecium development in Arabidopsis. Current Topics in Developmental Biology 45:155−205 doi: 10.1016/s0070-2153(08)60316-6
CrossRef Google Scholar
|
[17]
|
Luna-García V, Bernal Gallardo JJ, Rethoret-Pasty M, Pasha A, Provart NJ, et al. 2024. A high-resolution gene expression map of the medial and lateral domains of the gynoecium of Arabidopsis. Plant Physiology 195(1):410−29 doi: 10.1093/plphys/kiad658
CrossRef Google Scholar
|
[18]
|
Herrera-Ubaldo H, de Folter S. 2022. Gynoecium and fruit development in Arabidopsis. Development 149(5):dev200120 doi: 10.1242/dev.200120
CrossRef Google Scholar
|
[19]
|
Marsch-Martínez N, de Folter S. 2016. Hormonal control of the development of the gynoecium. Current Opinion in Plant Biology 29:104−14 doi: 10.1016/j.pbi.2015.12.006
CrossRef Google Scholar
|
[20]
|
Gómez-Felipe A, Branchini E, Wang B, Marconi M, Bertrand-Rakusová H, et al. 2024. Two orthogonal differentiation gradients locally coordinate fruit morphogenesis. Nature Communications 15:2912 doi: 10.1038/s41467-024-47325-1
CrossRef Google Scholar
|
[21]
|
Sablowski R. 2007. Flowering and determinacy in Arabidopsis. Journal of Experimental Botany 58(5):899−907 doi: 10.1093/jxb/erm002
CrossRef Google Scholar
|
[22]
|
Weits DA, Kunkowska AB, Kamps NCW, Portz KMS, Packbier NK, et al. 2019. An apical hypoxic niche sets the pace of shoot meristem activity. Nature 569:714−17 doi: 10.1038/s41586-019-1203-6
CrossRef Google Scholar
|
[23]
|
Shang E, Ito T, Sun B. 2019. Control of floral stem cell activity in Arabidopsis. Plant Signaling & Behavior 14(11):1659706 doi: 10.1080/15592324.2019.1659706
CrossRef Google Scholar
|
[24]
|
Xu Y, Yamaguchi N, Gan ES, Ito T. 2019. When to stop: an update on molecular mechanisms of floral meristem termination. Journal of Experimental Botany 70(6):1711−18 doi: 10.1093/jxb/erz048
CrossRef Google Scholar
|
[25]
|
Coen ES, Meyerowitz EM. 1991. The war of the whorls: genetic interactions controlling flower development. Nature 353:31−37 doi: 10.1038/353031a0
CrossRef Google Scholar
|
[26]
|
Irish V. 2017. The ABC model of floral development. Current Biology 27(17):R887−R890 doi: 10.1016/j.cub.2017.03.045
CrossRef Google Scholar
|
[27]
|
Bowman JL, Drews GN, Meyerowitz EM. 1991. Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specific cell types late in flower development. The Plant Cell 3(8):749−58 doi: 10.1105/tpc.3.8.749
CrossRef Google Scholar
|
[28]
|
Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF. 2000. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200−3 doi: 10.1038/35012103
CrossRef Google Scholar
|
[29]
|
Mayer KF, Schoof H, Haecker A, Lenhard M, Jürgens G, et al. 1998. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95(6):805−15 doi: 10.1016/S0092-8674(00)81703-1
CrossRef Google Scholar
|
[30]
|
Fletcher JC, Brand U, Running MP, Simon R, Meyerowitz EM. 1999. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283(5409):1911−14 doi: 10.1126/science.283.5409.1911
CrossRef Google Scholar
|
[31]
|
Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R. 2000. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289(5479):617−19 doi: 10.1126/science.289.5479.617
CrossRef Google Scholar
|
[32]
|
Schoof H, Lenhard M, Haecker A, Mayer KF, Jürgens G, et al. 2000. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100(6):635−44 doi: 10.1016/S0092-8674(00)80700-X
CrossRef Google Scholar
|
[33]
|
Lohmann JU, Hong RL, Hobe M, Busch MA, Parcy F, et al. 2001. A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell 105(6):793−803 doi: 10.1016/S0092-8674(01)00384-1
CrossRef Google Scholar
|
[34]
|
Das P, Ito T, Wellmer F, Vernoux T, Dedieu A, et al. 2009. Floral stem cell termination involves the direct regulation of AGAMOUS by PERIANTHIA. Development 136(10):1605−11 doi: 10.1242/dev.035436
CrossRef Google Scholar
|
[35]
|
Maier AT, Stehling-Sun S, Wollmann H, Demar M, Hong RL, et al. 2009. Dual roles of the bZIP transcription factor PERIANTHIA in the control of floral architecture and homeotic gene expression. Development 136(10):1613−20 doi: 10.1242/dev.033647
CrossRef Google Scholar
|
[36]
|
Lenhard M, Bohnert A, Jürgens G, Laux T. 2001. Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell 105(6):805−14 doi: 10.1016/S0092-8674(01)00390-7
CrossRef Google Scholar
|
[37]
|
Liu X, Kim YJ, Müller R, Yumul RE, Liu C, et al. 2011. AGAMOUS terminates floral stem cell maintenance in Arabidopsis by directly repressing WUSCHEL through recruitment of Polycomb Group proteins. The Plant Cell 23(10):3654−70 doi: 10.1105/tpc.111.091538
CrossRef Google Scholar
|
[38]
|
Guo L, Cao X, Liu Y, Li J, Li Y, et al. 2018. A chromatin loop represses WUSCHEL expression in Arabidopsis. The Plant Journal 94(6):1083−1097 doi: 10.1111/tpj.13921
CrossRef Google Scholar
|
[39]
|
Kwaśniewska K, Breathnach C, Fitzsimons C, Goslin K, Thomson B, et al. 2021. Expression of KNUCKLES in the stem cell domain is required for its function in the control of floral meristem activity in Arabidopsis. Frontiers in Plant Science 12:704351 doi: 10.3389/fpls.2021.704351
CrossRef Google Scholar
|
[40]
|
Bollier N, Sicard A, Leblond J, Latrasse D, Gonzalez N, et al. 2018. At-MINI ZINC FINGER2 and Sl-INHIBITOR OF MERISTEM ACTIVITY, a conserved missing link in the regulation of floral meristem termination in Arabidopsis and Tomato. The Plant Cell 30(1):83−100 doi: 10.1105/tpc.17.00653
CrossRef Google Scholar
|
[41]
|
Gorham SR, Weiner AI, Yamadi M, Krogan NT. 2018. HISTONE DEACETYLASE 19 and the flowering time gene FD maintain reproductive meristem identity in an age-dependent manner. Journal of Experimental Botany 69(20):4757−71 doi: 10.1093/jxb/ery239
CrossRef Google Scholar
|
[42]
|
Baile F, Merini W, Hidalgo I, Calonje M. 2020. Dissection of PRC1 and PRC2 recruitment in Arabidopsis connects EAR repressome to PRC2 anchoring. BioRxiv Preprint doi: 10.1101/2020.08.28.271999
CrossRef Google Scholar
|
[43]
|
Pelayo MA, Morishita F, Sawada H, Matsushita K, Iimura H, et al. 2023. AGAMOUS regulates various target genes via cell cycle-coupled H3K27me3 dilution in floral meristems and stamens. The Plant Cell 35(8):2821−47 doi: 10.1093/plcell/koad123
CrossRef Google Scholar
|
[44]
|
Powell AE, Lenhard M. 2012. Control of organ size in plants. Current Biology 22(9):R360−R367 doi: 10.1016/j.cub.2012.02.010
CrossRef Google Scholar
|
[45]
|
Hamant O, Heisler MG, Jönsson H, Krupinski P, Uyttewaal M, et al. 2008. Developmental patterning by mechanical signals in Arabidopsis. Science 322(5908):1650−55 doi: 10.1126/science.1165594
CrossRef Google Scholar
|
[46]
|
Perrot-Rechenmann C. 2010. Cellular responses to auxin: division versus expansion. Cold Spring Harbor Perspectives in Biology 2(5):a001446 doi: 10.1101/cshperspect.a001446
CrossRef Google Scholar
|
[47]
|
Yamaguchi N, Huang J, Tatsumi Y, Abe M, Sugano SS, et al. 2018. Chromatin-mediated feed-forward auxin biosynthesis in floral meristem determinacy. Nature Communications 9:5290 doi: 10.1038/s41467-018-07763-0
CrossRef Google Scholar
|
[48]
|
Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, et al. 2001. A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291(5502):306−9 doi: 10.1126/science.291.5502.306
CrossRef Google Scholar
|
[49]
|
Eldridge T, Łangowski Ł, Stacey N, Jantzen F, Moubayidin L, et al. 2016. Fruit shape diversity in the Brassicaceae is generated by varying patterns of anisotropy. Development 143(18):3394−406 doi: 10.1242/dev.135327
CrossRef Google Scholar
|
[50]
|
van Berkel K, de Boer RJ, Scheres B, ten Tusscher K. 2013. Polar auxin transport: models and mechanisms. Development 140(11):2253−68 doi: 10.1242/dev.079111
CrossRef Google Scholar
|
[51]
|
Abas L, Kolb M, Stadlmann J, Janacek DP, Lukic K, et al. 2021. Naphthylphthalamic acid associates with and inhibits PIN auxin transporters. Proceedings of the National Academy of Sciences of the United States of America 118(1):e2020857118 doi: 10.1073/pnas.2020857118
CrossRef Google Scholar
|
[52]
|
Moubayidin L, Ostergaard L. 2014. Dynamic control of auxin distribution imposes a bilateral-to-radial symmetry switch during gynoecium development. Current Biology 24(22):2743−48 doi: 10.1016/j.cub.2014.09.080
CrossRef Google Scholar
|
[53]
|
Gälweiler L, Guan C, Müller A, Wisman E, Mendgen K, et al. 1998. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282(5397):2226−30 doi: 10.1126/science.282.5397.2226
CrossRef Google Scholar
|
[54]
|
Larsson E, Roberts CJ, Claes AR, Franks RG, Sundberg E. 2014. Polar auxin transport is essential for medial versus lateral tissue specification and vascular-mediated valve outgrowth in Arabidopsis gynoecia. Plant Physiology 166(4):1998−2012 doi: 10.1104/pp.114.245951
CrossRef Google Scholar
|
[55]
|
Girin T, Paicu T, Stephenson P, Fuentes S, Körner E, et al. 2011. INDEHISCENT and SPATULA interact to specify carpel and valve margin tissue and thus promote seed dispersal in Arabidopsis. The Plant Cell 23(10):3641−53 doi: 10.1105/tpc.111.090944
CrossRef Google Scholar
|
[56]
|
Christensen SK, Dagenais N, Chory J, Weigel D. 2000. Regulation of auxin response by the protein kinase PINOID. Cell 100(4):469−78 doi: 10.1016/S0092-8674(00)80682-0
CrossRef Google Scholar
|
[57]
|
Dhonukshe P, Huang F, Galvan-Ampudia CS, Mähönen AP, Kleine-Vehn J, et al. 2010. Plasma membrane-bound AGC3 kinases phosphorylate PIN auxin carriers at TPRXS(N/S) motifs to direct apical PIN recycling. Development 137(19):3245−55 doi: 10.1242/dev.052456
CrossRef Google Scholar
|
[58]
|
Friml J, Yang X, Michniewicz M, Weijers D, Quint A, et al. 2004. A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science 306(5697):862−65 doi: 10.1126/science.1100618
CrossRef Google Scholar
|
[59]
|
Huang F, Zago MK, Abas L, van Marion A, Galván-Ampudia CS, et al. 2010. Phosphorylation of conserved PIN motifs directs Arabidopsis PIN1 polarity and auxin transport. The Plant Cell 22(4):1129−42 doi: 10.1105/tpc.109.072678
CrossRef Google Scholar
|
[60]
|
Tasker-Brown W, Koh SWH, Trozzi N, Maio KA, Jamil I, et al. 2024. An incoherent feed-forward loop involving bHLH transcription factors, Auxin and CYCLIN-Ds regulates style radial symmetry establishment in Arabidopsis. The Plant Journal 119:2885−903 doi: 10.1111/tpj.16959
CrossRef Google Scholar
|
[61]
|
Carabelli M, Turchi L, Morelli G, Østergaard L, Ruberti I, et al. 2021. Coordination of biradial-to-radial symmetry and tissue polarity by HD-ZIP II proteins. Nature Communications 12(1):4321 doi: 10.1038/s41467-021-24550-6
CrossRef Google Scholar
|
[62]
|
Jiang Y, Curran-French S, Koh SWH, Jamil I, Gu B, et al. 2024. O-glycosylation of the transcription factor SPATULA promotes style development in Arabidopsis. Nature Plants 10(2):283−99 doi: 10.1038/s41477-023-01617-4
CrossRef Google Scholar
|
[63]
|
Østergaard L. 2009. Don’t ‘leaf’ now. The making of a fruit. Current Opinion in Plant Biology 2(1):36−41 doi: 10.1016/j.pbi.2008.09.011
CrossRef Google Scholar
|
[64]
|
Alvarez JP, Goldshmidt A, Efroni I, Bowman JL, Eshed Y. 2009. The NGATHA distal organ development genes are essential for style specification in Arabidopsis. The Plant Cell 21(5):1373−93 doi: 10.1105/tpc.109.065482
CrossRef Google Scholar
|
[65]
|
Ballester P, Martínez-Godoy MA, Ezquerro M, Navarrete-Gómez M, Trigueros M, et al. 2021. A transcriptional complex of NGATHA and bHLH transcription factors directs stigma development in Arabidopsis. The Plant Cell 33(12):3645−57 doi: 10.1093/plcell/koab236
CrossRef Google Scholar
|
[66]
|
Cheng Y, Dai X, Zhao Y. 2006. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes & Development 20(13):1790−99 doi: 10.1101/gad.1415106
CrossRef Google Scholar
|
[67]
|
Sohlberg JJ, Myrenås M, Kuusk S, Lagercrantz U, Kowalczyk M, et al. 2006. STY1 regulates auxin homeostasis and affects apical-basal patterning of the Arabidopsis gynoecium. The Plant Journal 47(1):112−23 doi: 10.1111/j.1365-313X.2006.02775.x
CrossRef Google Scholar
|
[68]
|
Martínez-Fernández I, Sanchís S, Marini N, Balanzá V, Ballester P, et al. 2014. The effect of NGATHA altered activity on auxin signaling pathways within the Arabidopsis gynoecium. Frontiers in Plant Science 5:210
Google Scholar
|
[69]
|
Kepinski S, Leyser O. 2005. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435(7041):446−51 doi: 10.1038/nature03542
CrossRef Google Scholar
|
[70]
|
Leyser O. 2018. Auxin signaling. Plant Physiology 176:465−79 doi: 10.1104/pp.17.00765
CrossRef Google Scholar
|
[71]
|
Sessions A, Nemhauser JL, McColl A, Roe JL, Feldmann KA, et al. 1997. ETTIN patterns the Arabidopsis floral meristem and reproductive organs. Development 124(22):4481−91 doi: 10.1242/dev.124.22.4481
CrossRef Google Scholar
|
[72]
|
Simonini S, Deb J, Moubayidin L, Stephenson P, Valluru M, et al. 2016. A noncanonical auxin-sensing mechanism is required for organ morphogenesis in Arabidopsis. Genes & Development 30(20):2286−96 doi: 10.1101/gad.285361.116
CrossRef Google Scholar
|
[73]
|
Kuhn A, Ramans Harborough S, McLaughlin HM, Natarajan B, Verstraeten I, et al. 2020. Direct ETTIN-auxin interaction controls chromatin states in gynoecium development. eLife 9:e51787 doi: 10.7554/eLife.51787
CrossRef Google Scholar
|
[74]
|
Simonini S, Bencivenga S, Trick M, Østergaard L. 2017. Auxin-induced modulation of ETTIN activity orchestrates gene expression in Arabidopsis. The Plant Cell 29(8):1864−82 doi: 10.1105/tpc.17.00389
CrossRef Google Scholar
|
[75]
|
Wang Y, Wang N, Lan J, Pan Y, Jiang Y, et al. 2024. Arabidopsis transcription factor TCP4 controls the identity of the apical gynoecium. The Plant Cell 36:2668−88 doi: 10.1093/plcell/koae107
CrossRef Google Scholar
|
[76]
|
Li W, Huang X, Zou J, Wu J, Jiao H, et al. 2020. Three STIGMA AND STYLE STYLISTs pattern the fine architectures of apical gynoecium and are critical for male gametophyte-pistil interaction. Current Biology 30(23):4780−4788. e5 doi: 10.1016/j.cub.2020.09.006
CrossRef Google Scholar
|
[77]
|
Chickarmane VS, Gordon SP, Tarr PT, Heisler MG, Meyerowitz EM. 2012. Cytokinin signaling as a positional cue for patterning the apical-basal axis of the growing Arabidopsis shoot meristem. Proceedings of the National Academy of Sciences of the United States of America 109(10):4002−7 doi: 10.1073/pnas.1200636109
CrossRef Google Scholar
|
[78]
|
Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, et al. 2003. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. The Plant Cell 15(11):2532−50 doi: 10.1105/tpc.014928
CrossRef Google Scholar
|
[79]
|
Marsch-Martínez N, Ramos-Cruz D, Irepan Reyes-Olalde J, Lozano-Sotomayor P, Zúñiga-Mayo VM, et al. 2012. The role of cytokinin during Arabidopsis gynoecia and fruit morphogenesis and patterning. The Plant Journal 72(2):222−34 doi: 10.1111/j.1365-313X.2012.05062.x
CrossRef Google Scholar
|
[80]
|
Kang J, Lee Y, Sakakibara H, Martinoia E. 2017. Cytokinin transporters: GO and STOP in Signaling. Trends in Plant Science 22(6):455−61 doi: 10.1016/j.tplants.2017.03.003
CrossRef Google Scholar
|
[81]
|
Kuroha T, Tokunaga H, Kojima M, Ueda N, Ishida T, et al. 2009. Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. The Plant Cell 21(10):3152−69 doi: 10.1105/tpc.109.068676
CrossRef Google Scholar
|
[82]
|
Kieber JJ, Schaller GE. 2018. Cytokinin signaling in plant development. Development 145(4):dev149344 doi: 10.1242/dev.149344
CrossRef Google Scholar
|
[83]
|
Ishida K, Yamashino T, Yokoyama A, Mizuno T. 2008. Three type-B response regulators, ARR1, ARR10 and ARR12, play essential but redundant roles in cytokinin signal transduction throughout the life cycle of Arabidopsis thaliana. Plant And Cell Physiology 49(1):47−57 doi: 10.1093/pcp/pcm165
CrossRef Google Scholar
|
[84]
|
Reyes-Olalde JI, Zúñiga-Mayo VM, Serwatowska J, Chavez Montes RA, Lozano-Sotomayor P, et al. 2017. The bHLH transcription factor SPATULA enables cytokinin signaling, and both activate auxin biosynthesis and transport genes at the medial domain of the gynoecium. PLoS Genetics 13(4):e1006726 doi: 10.1371/journal.pgen.1006726
CrossRef Google Scholar
|
[85]
|
Bartrina I, Otto E, Strnad M, Werner T, Schmülling T. 2011. Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. The Plant Cell 23(1):69−80 doi: 10.1105/tpc.110.079079
CrossRef Google Scholar
|
[86]
|
Aida, M, Ishida, T, Fukaki, H, Fujisawa, H, Tasaka, M. 1997. Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. The Plant Cell 9(6):841−57 doi: 10.1105/tpc.9.6.841
CrossRef Google Scholar
|
[87]
|
Laufs P, Peaucelle A, Morin H, Traas J. 2004. MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development 131(17):4311−22 doi: 10.1242/dev.01320
CrossRef Google Scholar
|
[88]
|
Kamiuchi Y, Yamamoto K, Furutani M, Tasaka M, Aida M. 2014. The CUC1 and CUC2 genes promote carpel margin meristem formation during Arabidopsis gynoecium development. Frontiers in Plant Science 5:165 doi: 10.3389/fpls.2014.00165
CrossRef Google Scholar
|
[89]
|
Hibara KI, Takada S, Tasaka M. 2003. CUC1 gene activates the expression of SAM-related genes to induce adventitious shoot formation. The Plant Journal 36(5):687−96 doi: 10.1046/j.1365-313X.2003.01911.x
CrossRef Google Scholar
|
[90]
|
Spinelli SV, Martin AP, Viola IL, Gonzalez DH, Palatnik JF. 2011. A mechanistic link between STM and CUC1 during Arabidopsis development. Plant Physiology 156(4):1894−904 doi: 10.1104/pp.111.177709
CrossRef Google Scholar
|
[91]
|
Long JA, Moan EI, Medford JI, Barton MK. 1996. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379:66−69 doi: 10.1038/379066a0
CrossRef Google Scholar
|
[92]
|
Jasinski S, Piazza P, Craft J, Hay A, Woolley L, et al. 2005. KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Current Biology 15:1560−65 doi: 10.1016/j.cub.2005.07.023
CrossRef Google Scholar
|
[93]
|
Yanai O, Shani E, Dolezal K, Tarkowski P, Sablowski R, et al. 2005. Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Current Biology 15(17):1566−71 doi: 10.1016/j.cub.2005.07.060
CrossRef Google Scholar
|
[94]
|
Balkunde R, Kitagawa M, Xu XM, Wang J, Jackson D. 2017. SHOOT MERISTEMLESS trafficking controls axillary meristem formation, meristem size and organ boundaries in Arabidopsis. The Plant Journal 90(3):435−46 doi: 10.1111/tpj.13504
CrossRef Google Scholar
|
[95]
|
Scofield S, Dewitte W, Murray JAH. 2007. The KNOX gene SHOOT MERISTEMLESS is required for the development of reproductive meristematic tissues in Arabidopsis. The Plant Journal 50(5):767−81 doi: 10.1111/j.1365-313X.2007.03095.x
CrossRef Google Scholar
|
[96]
|
Groszmann M, Paicu T, Alvarez JP, Swain SM, Smyth DR. 2011. SPATULA and ALCATRAZ, are partially redundant, functionally diverging bHLH genes required for Arabidopsis gynoecium and fruit development. The Plant Journal 68(5):816−29 doi: 10.1111/j.1365-313X.2011.04732.x
CrossRef Google Scholar
|
[97]
|
Roeder AHK, Ferrándiz C, Yanofsky MF. 2003. The role of the REPLUMLESS homeodomain protein in patterning the Arabidopsis fruit. Current Biology 13(18):1630−35 doi: 10.1016/j.cub.2003.08.027
CrossRef Google Scholar
|
[98]
|
Crawford BCW, Ditta G, Yanofsky MF. 2007. The NTT gene is required for transmitting-tract development in carpels of Arabidopsis thaliana. Current Biology 17(13):1101−8 doi: 10.1016/j.cub.2007.05.079
CrossRef Google Scholar
|
[99]
|
Marsch-Martínez N, Zúñiga-Mayo VM, Herrera-Ubaldo H, Ouwerkerk PBF, Pablo-Villa J, et al. 2014. The NTT transcription factor promotes replum development in Arabidopsis fruits. The Plant Journal 80(1):69−81 doi: 10.1111/tpj.12617
CrossRef Google Scholar
|
[100]
|
Zuñiga-Mayo VM, Baños-Bayardo CR, Díaz-Ramírez D, Marsch-Martínez N, de Folter S. 2018. Conserved and novel responses to cytokinin treatments during flower and fruit development in Brassica napus and Arabidopsis thaliana. Scientific Reports 8(1):6836 doi: 10.1038/s41598-018-25017-3
CrossRef Google Scholar
|
[101]
|
Dinneny JR, Weigel D, Yanofsky MF. 2005. A genetic framework for fruit patterning in Arabidopsis thaliana. Development 132(21):4687−96 doi: 10.1242/dev.02062
CrossRef Google Scholar
|
[102]
|
Gu Q, Ferrándiz C, Yanofsky MF, Martienssen R. 1998. The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125(8):1509−17 doi: 10.1242/dev.125.8.1509
CrossRef Google Scholar
|
[103]
|
Ferrándiz C, Fourquin C. 2014. Role of the FUL-SHP network in the evolution of fruit morphology and function. Journal Of Experimental Botany 65(16):4505−13 doi: 10.1093/jxb/ert479
CrossRef Google Scholar
|
[104]
|
Venglat SP, Dumonceaux T, Rozwadowski K, Parnell L, Babic V, et al. 2002. The homeobox gene BREVIPEDICELLUS is a key regulator of inflorescence architecture in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 99(7):4730−35 doi: 10.1073/pnas.072626099
CrossRef Google Scholar
|
[105]
|
Crawford BCW, Yanofsky MF. 2011. HALF FILLED promotes reproductive tract development and fertilization efficiency in Arabidopsis thaliana. Development 138(14):2999−3009 doi: 10.1242/dev.067793
CrossRef Google Scholar
|
[106]
|
Ripoll JJ, Zhu M, Brocke S, Hon CT, Yanofsky MF, et al. 2019. Growth dynamics of the Arabidopsis fruit is mediated by cell expansion. Proceedings of the National Academy of Sciences of the United States of America 116(50):25333−42 doi: 10.1073/pnas.1914096116
CrossRef Google Scholar
|
[107]
|
Bensmihen S, Hanna AI, Langlade NB, Micol JL, Bangham A, et al. 2008. Mutational spaces for leaf shape and size. Hfsp Journal 2(2):110−20 doi: 10.2976/1.2836738
CrossRef Google Scholar
|
[108]
|
Roeder AHK, Chickarmane V, Cunha A, Obara B, Manjunath BS, et al. 2010. Variability in the control of cell division underlies sepal epidermal patterning in Arabidopsis thaliana. PLoS Biology 8(5):e1000367 doi: 10.1371/journal.pbio.1000367
CrossRef Google Scholar
|
[109]
|
José Ripoll J, Bailey LJ, Mai QA, Wu SL, Hon CT, et al. 2015. microRNA regulation of fruit growth. Nature Plants 1(4):15036 doi: 10.1038/nplants.2015.36
CrossRef Google Scholar
|
[110]
|
Sang Q, Vayssières A, Ó'Maoiléidigh DS, Yang X, Vincent C, et al. 2022. MicroRNA172 controls inflorescence meristem size through regulation of APETALA2 in Arabidopsis. New Phytologist 235:356−71 doi: 10.1111/nph.18111
CrossRef Google Scholar
|
[111]
|
Di Marzo M, Herrera-Ubaldo H, Caporali E, Novák O, Strnad M, et al. 2020. SEEDSTICK Controls Arabidopsis Fruit Size by Regulating Cytokinin Levels and FRUITFULL. Cell Reports 30(8):2846−2857.e3 doi: 10.1016/j.celrep.2020.01.101
CrossRef Google Scholar
|
[112]
|
Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, et al. 2003. Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424:85−88 doi: 10.1038/nature01741
CrossRef Google Scholar
|
[113]
|
Ballester P, Ferrándiz C. 2017. Shattering fruits: variations on a dehiscent theme. Current Opinion in Plant Biology 35:68−75 doi: 10.1016/j.pbi.2016.11.008
CrossRef Google Scholar
|
[114]
|
Liljegren SJ, Ditta GS, Eshed Y, Savidge B, Bowman JL, et al. 2000. SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404:766−70 doi: 10.1038/35008089
CrossRef Google Scholar
|
[115]
|
Lewis MW, Leslie ME, Liljegren SJ. 2006. Plant separation: 50 ways to leave your mother. Current Opinion in Plant Biology 9(1):59−65 doi: 10.1016/j.pbi.2005.11.009
CrossRef Google Scholar
|
[116]
|
Liljegren SJ, Roeder AHK, Kempin SA, Gremski K, Østergaard L, et al. 2004. Control of Fruit Patterning in Arabidopsis by GA. Cell 116:843−53 doi: 10.1016/S0092-8674(04)00217-X
CrossRef Google Scholar
|
[117]
|
Rajani S, Sundaresan V. 2001. The Arabidopsis myc/bHLH gene ALCATRAZ enables cell separation in fruit dehiscence. Current Biology 11(24):1914−22 doi: 10.1016/S0960-9822(01)00593-0
CrossRef Google Scholar
|
[118]
|
Ferrándiz C, Liljegren SJ, Yanofsky MF. 2000. Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science 289(5478):436−38 doi: 10.1126/science.289.5478.436
CrossRef Google Scholar
|
[119]
|
Chung KS, Lee JH, Lee JS, Ahn JH. 2013. Fruit indehiscence caused by enhanced expression of NO TRANSMITTING TRACT in Arabidopsis thaliana. Molecules and Cells 35(6):519−25 doi: 10.1007/s10059-013-0030-0
CrossRef Google Scholar
|
[120]
|
Ripoll JJ, Roeder AHK, Ditta GS, Yanofsky MF. 2011. A novel role for the floral homeotic gene APETALA2 during Arabidopsis fruit development. Development 138(23):5167−76 doi: 10.1242/dev.073031
CrossRef Google Scholar
|
[121]
|
Mitsuda N, Ohme-Takagi M. 2009. Functional analysis of transcription factors in Arabidopsis. Plant & Cell Physiology 50(7):1232−48 doi: 10.1093/pcp/pcp075
CrossRef Google Scholar
|
[122]
|
Zhong R, Richardson EA, Ye ZH. 2007. Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis. Planta 225(6):1603−11 doi: 10.1007/s00425-007-0498-y
CrossRef Google Scholar
|
[123]
|
Mitsuda N, Ohme-Takagi M. 2008. NAC transcription factors NST1 and NST3 regulate pod shattering in a partially redundant manner by promoting secondary wall formation after the establishment of tissue identity. The Plant Journal 56:768−78 doi: 10.1111/j.1365-313X.2008.03633.x
CrossRef Google Scholar
|
[124]
|
Ogawa M, Kay P, Wilson S, Swain SM. 2009. ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE1 (ADPG1), ADPG2, and QUARTET2 are Polygalacturonases required for cell separation during reproductive development in Arabidopsis. The Plant Cell 21(1):216−33 doi: 10.1105/tpc.108.063768
CrossRef Google Scholar
|
[125]
|
van Gelderen K, van Rongen M, Liu AA, Otten A, Offringa R. 2016. An INDEHISCENT-controlled auxin response specifies the separation layer in early Arabidopsis fruit. Molecular Plant 9(6):857−69 doi: 10.1016/j.molp.2016.03.005
CrossRef Google Scholar
|
[126]
|
Luschnig C, Vert G. 2014. The dynamics of plant plasma membrane proteins: PINs and beyond. Development 141:2924−38 doi: 10.1242/dev.103424
CrossRef Google Scholar
|
[127]
|
Sorefan K, Girin T, Liljegren SJ, Ljung K, Robles P, et al. 2009. A regulated auxin minimum is required for seed dispersal in Arabidopsis. Nature 459(7246):583−86 doi: 10.1038/nature07875
CrossRef Google Scholar
|
[128]
|
Li XR, Vroomans RMA, Fox S, Grieneisen VA, Østergaard L, et al. 2019. Systems biology approach pinpoints minimum requirements for auxin distribution during fruit opening. Molecular Plant 12(6):863−78 doi: 10.1016/j.molp.2019.05.003
CrossRef Google Scholar
|
[129]
|
Arnaud N, Girin T, Sorefan K, Fuentes S, Wood TA et al. 2010. Gibberellins control fruit patterning in Arabidopsis thaliana. Genes & Development 24(19):2127−32 doi: 10.1101/gad.593410
CrossRef Google Scholar
|
[130]
|
Balanzà V, Roig-Villanova I, Di Marzo M, Masiero S, Colombo L. 2016. Seed abscission and fruit dehiscence required for seed dispersal rely on similar genetic networks. Development 143(18):3372−81 doi: 10.1242/dev.135202
CrossRef Google Scholar
|
[131]
|
Shi B, Felipo-Benavent A, Cerutti G, Galvan-Ampudia C, Jilli L, et al. 2024. A quantitative gibberellin signaling biosensor reveals a role for gibberellins in internode specification at the shoot apical meristem. Nature Communications 15(1):3895 doi: 10.1038/s41467-024-48116-4
CrossRef Google Scholar
|
[132]
|
Dong Y, Jantzen F, Stacey N, Łangowski Ł, Moubayidin L, et al. 2019. Regulatory diversification of INDEHISCENT in the Capsella genus directs variation in fruit morphology. Current Biology 29(6):1038−1046.e4 doi: 10.1016/j.cub.2019.01.057
CrossRef Google Scholar
|
[133]
|
Dong Y, Østergaard L. 2019. Fruit development and diversification. Current Biology 29(16):R781−R778 doi: 10.1016/j.cub.2019.07.010
CrossRef Google Scholar
|