[1] |
Zaid A, Wani SH. 2019. Reactive oxygen species generation, scavenging and signaling in plant defense responses. In Bioactive molecules in plant defense: Signaling in growth and stress, eds. Jogaiah S, Abdelrahman M. Cham: Springer. pp. 111–32. doi: 10.1007/978-3-030-27165-7_7 |
[2] |
Xu G, Li L, Zhou J, Lyu D, Zhao D, et al. 2023. Comparison of transcriptome and metabolome analysis revealed differences in cold resistant metabolic pathways in different apple cultivars under low temperature stress. Horticultural Plant Journal 9:183−98 doi: 10.1016/j.hpj.2022.09.002 |
[3] |
Shafi A, Hassan F, Khanday FA. 2022. Reactive oxygen and nitrogen species: Oxidative damage and antioxidative defense mechanism in plants under abiotic stress. In: Plant Abiotic Stress Physiology (Apple Academic Press. doi: 10.1201/9781003180562-3 |
[4] |
Ntagkas N, Woltering E, Nicole C, Labrie C, Marcelis LFM. 2019. Light regulation of vitamin C in tomato fruit is mediated through photosynthesis. Environmental and Experimental Botany 158:180−88 doi: 10.1016/j.envexpbot.2018.12.002 |
[5] |
Pastori GM, Kiddle G, Antoniw J, Bernard S, Veljovic-Jovanovic S, et al. 2003. Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling. The Plant Cell 15:939−51 doi: 10.1105/tpc.010538 |
[6] |
Cruz-Rus E, Amaya I, Valpuesta V. 2012. The challenge of increasing vitamin C content in plant foods. Biosynthesis Journal 7:1110−21 doi: 10.1002/biot.201200041 |
[7] |
Gould BS. 1961. Ascorbic acid and collagen fiber formation. Vitamins & Hormones 18:89−120 doi: 10.1016/s0083-6729(08)60860-2 |
[8] |
Hancock RD, Viola R. 2005. Improving the nutritional value of crops through enhancement of L-ascorbic acid (vitamin C) content: rationale and biotechnological opportunities. Journal of Agricultural and Food Chemistry 53:5248−57 doi: 10.1021/jf0503863 |
[9] |
Aizawa S, Senda M, Harada A, Maruyama N, Ishida T, et al. 2013. Structural basis of the γ-lactone-ring formation in ascorbic acid biosynthesis by the senescence marker protein-30/gluconolactonase. PLoS One 8:53706 doi: 10.1371/journal.pone.0053706 |
[10] |
Foyer CH, Kunert K. 2024. The ascorbate–glutathione cycle coming of age. Journal of Experimental Botany 75:2682−99 doi: 10.1093/jxb/erae023 |
[11] |
Gest N, Gautier H, Stevens, R. 2013. Ascorbate as seen through plant evolution: the rise of a successful molecule? Journal of Experimental Botany 64:33−53 doi: 10.1093/jxb/ers297 |
[12] |
Gajardo HA, Morales M, Larama G, Luengo-Escobar A, López D, Machado M, Nunes-Nesi A, Reyes-Díaz M, Planchais S, Savouré A. 2024. Physiological, transcriptomic and metabolomic insights of three extremophyte woody species living in the multi-stress environment of the Atacama Desert. Planta 260:55 doi: 10.1007/s00425-024-04484-1 |
[13] |
Ishikawa T, Maruta T, Yoshimura K, Smirnoff, N. 2018. Biosynthesis and regulation of ascorbic acid in plants. In Antioxidants and antioxidant enzymes in higher plants, eds. Gupta D, Palma J, Corpas F. pp. 163−79. Cham: Springer. doi: 10.1007/978-3-319-75088-0_8 |
[14] |
Klimczak I, Gliszczyńska-Świgło A. 2015. Comparison of UPLC and HPLC methods for determination of vitamin C. Food Chemistry 175:100−5 doi: 10.1016/j.foodchem.2014.11.104 |
[15] |
RoyChoudhury S. 2019. Towards stable electrochemical sensing for wearable wound monitoring. Thesis. Florida International University, USA. doi: 10.25148/etd.FIDC007817 |
[16] |
Dou M, Sanjay ST, Benhabib M, Xu F, Li X. 2015. Low-cost bioanalysis on paper-based and its hybrid microfluidic platforms. Talanta 145:43−54 doi: 10.1016/j.talanta.2015.04.068 |
[17] |
Boobphahom S, Nguyet Ly M, Soum V, Pyun N, Kwon OS, et al. 2020. Recent advances in microfluidic paper-based analytical devices toward high-throughput screening. Molecules 25:2970 doi: 10.3390/molecules25132970 |
[18] |
Kumar V, Kim H, Pandey B, James TD, Yoon J, et al. 2023. Recent advances in fluorescent and colorimetric chemosensors for the detection of chemical warfare agents: a legacy of the 21st century. Chemical Society Reviews 52:663−704 doi: 10.1039/D2CS00651K |
[19] |
Hang Y, Boryczka J, Wu N. 2022. Visible-light and near-infrared fluorescence and surface-enhanced Raman scattering point-of-care sensing and bio-imaging: A review. Chemical Society Reviews 51:329−75 doi: 10.1039/C9CS00621D |
[20] |
Karunathilake EMBM, Le AT, Heo S, Chung YS, Mansoor S. 2023. The path to smart farming: Innovations and opportunities in precision agriculture. Agriculture 13:1593 doi: 10.3390/agriculture13081593 |
[21] |
Bilska K, Wojciechowska N, Alipour S, Kalemba EM. 2019. Ascorbic acid—The little-known antioxidant in woody plants. Antioxidants 8:645 doi: 10.3390/antiox8120645 |
[22] |
Roychoudhury A, Basu S. 2012. Ascorbate-glutathione and plant tolerance to various abiotic stresses. In Oxidative stress in plants: causes, consequences and tolerance, eds. Anjum NA, Umar S, Ahmad A. New Delhi, India: IK International Publishing House. pp. 177−258 |
[23] |
Reddy AR, Chaitanya KV, Vivekanandan M. 2004. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161:1189−202 doi: 10.1016/j.jplph.2004.01.013 |
[24] |
Pérez FJ, Villegas D, Mejia N. 2002. Ascorbic acid and flavonoid-peroxidase reaction as a detoxifying system of H2O2 in grapevine leaves. Phytochemistry 60:573−80 doi: 10.1016/S0031-9422(02)00146-2 |
[25] |
Arrigoni O, Tullio MC. 2000. The role of ascorbic acid in cell metabolism: between gene-directed functions and unpredictable chemical reactions. Journal of Plant Physiology 157:481−88 doi: 10.1016/S0176-1617(00)80102-9 |
[26] |
Pacini E, Dolferus R. 2019. Pollen developmental arrest: maintaining pollen fertility in a world with a changing climate. Frontiers in Plant Science 10:679 doi: 10.3389/fpls.2019.00679 |
[27] |
Arrigoni O. 1994. Ascorbate system in plant development. Journal of Bioenergetics and Biomembranes 26:407−19 doi: 10.1007/BF00762782 |
[28] |
Rosa SB, Caverzan A, Teixeira FK, Lazzarotto F, Silveira JAG, et al. 2010. Cytosolic APx knockdown indicates an ambiguous redox response in rice. Phytochemistry 71:548−58 doi: 10.1016/j.phytochem.2010.01.003 |
[29] |
Danna CH, Bartoli CG, Sacco F, Ingala LR, Santa-María GE, et al. 2003. Thylakoid-bound ascorbate peroxidase mutant exhibits impaired electron transport and photosynthetic activity. Plant Physiology 132:2116−25 doi: 10.1104/pp.103.021717 |
[30] |
Chatzopoulou F, Sanmartin M, Mellidou I, Pateraki I, Koukounaras A, et al. 2020. Silencing of ascorbate oxidase results in reduced growth, altered ascorbic acid levels and ripening pattern in melon fruit. Plant Physiology and Biochemistry 156:291−303 doi: 10.1016/j.plaphy.2020.08.040 |
[31] |
Khalid S, Malik AU, Khan AS, Shahid M, Shafique M. 2016. Tree age, fruit size and storage conditions affect levels of ascorbic acid, total phenolic concentrations and total antioxidant activity of ‘Kinnow’ mandarin juice. Journal of the Science of Food and Agriculture 96:1319−25 doi: 10.1002/jsfa.7225 |
[32] |
Santos MO, de Oliveira Silveira HR, de Souza KRD, Almeida Lima A, Boas LVV, et al. 2018. Antioxidant system differential regulation is involved in coffee ripening time at different altitudes. Tropical Plant Biology 11:131−40 doi: 10.1007/s12042-018-9206-2 |
[33] |
Loewus FA. 1999. Biosynthesis and metabolism of ascorbic acid in plants and of analogs of ascorbic acid in fungi. Phytochemistry 52:193−210 doi: 10.1016/S0031-9422(99)00145-4 |
[34] |
Hassan A, Amjad SF, Saleem MH, Yasmin H, Imran M, et al. 2021. Foliar application of ascorbic acid enhances salinity stress tolerance in barley (Hordeum vulgare L.) through modulation of morpho-physio-biochemical attributes, ions uptake, osmo-protectants and stress response genes expression. Saudi Journal of Biological Sciences 28:4276−90 doi: 10.1016/j.sjbs.2021.03.045 |
[35] |
Davey MW, Montagu MV, Inze D, Sanmartin M, Kanellis A, et al. 2000. Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. Journal of the Science of Food and Agriculture 80:825−60 doi: 10.1002/(SICI)1097-0010(20000515)80:7<825::AID-JSFA598>3.0.CO;2-6 |
[36] |
Imai T, Ban Y, Terakami S, Yamamoto T, Moriguchi T. 2009. L-Ascorbate biosynthesis in peach: cloning of six L-galactose pathway-related genes and their expression during peach fruit development. Physiologia Plantarum 136:139−49 doi: 10.1111/j.1399-3054.2009.01213.x |
[37] |
Smirnoff N, Wheeler GL. 2024. The ascorbate biosynthesis pathway in plants is known, but there is a way to go with understanding control and functions. Journal of Experimental Botany 75:2604−30 doi: 10.1093/jxb/erad505 |
[38] |
Hodgson DA. 2000. Primary metabolism and its control in streptomycetes: a most unusual group of bacteria. Advances in Microbial Physiology 42:47−238 doi: 10.1016/s0065-2911(00)42003-5 |
[39] |
Matos IF, Morales LMM, Santana DB, Silva GMC, Gomes MMA, et al. 2022. Ascorbate synthesis as an alternative electron source for mitochondrial respiration: possible implications for the plant performance. Frontiers in Plant Science 13:987077 doi: 10.3389/fpls.2022.987077 |
[40] |
Schertl P, Sunderhaus S, Klodmann J, Grozeff GEG, Bartoli CG, et al. 2012. L-galactono-1,4-lactone dehydrogenase (GLDH) forms part of three subcomplexes of mitochondrial complex I in Arabidopsis thaliana. Journal of Biological Chemistry 287:14412−19 doi: 10.1074/jbc.M111.305144 |
[41] |
Szarka A, Bánhegyi G, Asard H. 2013. The inter-relationship of ascorbate transport, metabolism and mitochondrial, plastidic respiration. Antioxidants & Redox Signaling 19:1036−44 doi: 10.1089/ars.2012.5059 |
[42] |
Adler LN. 2012. From vitamin C to metabolite repair: The role of novel sugar nucleotide phosphorylases. Thesis. University of California, Los Angeles, United States. |
[43] |
Alok A, Singh S, Kumar P, Bhati KK. 2022. Potential of engineering the myo-inositol oxidation pathway to increase stress resilience in plants. Molecular Biology Reports 49:8025−35 doi: 10.1007/s11033-022-07333-0 |
[44] |
Viviani A, Fambrini M, Giordani T, Pugliesi C. 2021. L-Ascorbic acid in plants: From biosynthesis to its role in plant development and stress response. Agrochimica: International Journal of Plant Chemistry, Soil Science and Plant Nutrition of the University of Pisa 65:151−71 doi: 10.12871/00021857202124 |
[45] |
Mellidou I, Koukounaras A, Chatzopoulou F, Kostas S, Kanellis AK. 2017. Plant vitamin C: one single molecule with a plethora of roles. In Fruit and Vegetable Phytochemicals: Chemistry and Human Health, ed. Yahia EM. 2nd Edition. John Wiley & Sons. pp. 463−98. doi: https://doi.org/10.1002/9781119158042.ch22 |
[46] |
Smirnoff N, Wheeler GL. 2000. Ascorbic acid in plants: biosynthesis and function. Critical Reviews in Plant Sciences 19:267−90 doi: 10.1080/07352680091139231 |
[47] |
Broad RC, Bonneau JP, Hellens RP, Johnson AAT. 2020. Manipulation of ascorbate biosynthetic, recycling, and regulatory pathways for improved abiotic stress tolerance in plants. International Journal of Molecular Sciences 21:1790 doi: 10.3390/ijms21051790 |
[48] |
Hasanuzzaman M, Bhuyan MHMB, Zulfiqar F, Raza A, Mohsin SM, et al. 2020. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants 9:681 doi: 10.3390/antiox9080681 |
[49] |
Tripathy BC, Oelmüller R. 2012. Reactive oxygen species generation and signaling in plants. Plant Signaling & Behavior 7:1621−33 doi: 10.4161/psb.22455 |
[50] |
Orabi SA, Abou-Hussein SD. 2019. Antioxidant defense mechanisms enhance oxidative stress tolerance in plants. A review. Current Science International 8:565−76 doi: 10.20546/ijcmas.2019.807.069 |
[51] |
Puskas F, Gergely P Jr, Banki K, Perl A. 2000. Stimulation of the pentose phosphate pathway and glutathione levels by dehydroascorbate, the oxidized form of vitamin C. The FASEB Journal 14:1352−61 doi: 10.1096/fasebj.14.10.1352 |
[52] |
Das BK, Kumar A, Sreekumar SN, Ponraj K, Gadave K, et al. 2022. Comparative kinetic analysis of ascorbate (Vitamin-C) recycling dehydroascorbate reductases from plants and humans. Biochemical and Biophysical Research Communications 591:110−17 doi: 10.1016/j.bbrc.2021.12.103 |
[53] |
Sharma SK, Singh D, Pandey H, Jatav RB, Singh V, et al. 2022. An overview of roles of enzymatic and nonenzymatic antioxidants in plant. In Antioxidant Defense in Plants: Molecular Basis of Regulation, eds. Aftab T, Hakeem KR. Singapore: Springer. pp. 1−13. doi: 10.1007/978-981-16-7981-0_1 |
[54] |
Sharma P, Jha AB, Dubey RS, Pessarakli M. 2021. Reactive oxygen species generation, hazards, and defense mechanisms in plants under environmental (abiotic and biotic) stress conditions. In Handbook of Plant and Crop Physiology. Milton Park, United Kingdom. pp. 617−58. doi: 10.1201/9781003093640-37 |
[55] |
Akram NA, Shafiq F, Ashraf M. 2017. Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Frontiers in Plant Science 8:613 doi: 10.3389/fpls.2017.00613 |
[56] |
Strand Å, Hurry V, Henkes S, Huner N, Gustafsson P, et al. 1999. Acclimation of Arabidopsis leaves developing at low temperatures. Increasing cytoplasmic volume accompanies increased activities of enzymes in the Calvin cycle and in the sucrose-biosynthesis pathway. Plant Physiology 119:1387−98 doi: 10.1104/pp.119.4.1387 |
[57] |
Spreitzer RJ. 2003. Role of the small subunit in ribulose-1,5-bisphosphate carboxylase/oxygenase. Archives of Biochemistry and Biophysics 414:141−49 doi: 10.1016/S0003-9861(03)00171-1 |
[58] |
Pua EC, Gong H. 2004. Regulation of plant morphogenesis in vitro. In Biotechnology in Agriculture and Forestry, eds. Pua EC, Douglas CJ. Vol. 54. Berlin, Heidelberg: Springer. pp. 83−102. doi: 10.1007/978-3-662-06164-0_6 |
[59] |
EL Sabagh A, Islam MS, Hossain A, Iqbal MA, Mubeen M, et al. 2022. Phytohormones as growth regulators during abiotic stress tolerance in plants. Frontiers in Agronomy 4:765068 doi: 10.3389/fagro.2022.765068 |
[60] |
Lin YJ, Yao BT, Zhang Q, Feng YX, Xiang L. 2024. Biochemical insights into proline metabolism and its contribution to the endurant cell wall structure under metal stress. Ecotoxicology and Environmental Safety 282:116725 doi: 10.1016/j.ecoenv.2024.116725 |
[61] |
Celi GEA, Gratão PL, Lanza MGDB, Reis ARD. 2023. Physiological and biochemical roles of ascorbic acid on mitigation of abiotic stresses in plants. Plant Physiology and Biochemistry 202:107970 doi: 10.1016/j.plaphy.2023.107970 |
[62] |
Xiao M, Li Z, Zhu L, Wang J, Zhang B, et al. 2021. The multiple roles of ascorbate in the abiotic stress response of plants: Antioxidant, cofactor, and regulator. Frontiers in Plant Science 12:598173 doi: 10.3389/fpls.2021.598173 |
[63] |
Vanstraelen M, Benková E. 2012. Hormonal interactions in the regulation of plant development. Annual Review of Cell and Developmental Biology 28:463−87 doi: 10.1146/annurev-cellbio-101011-155741 |
[64] |
Mohamed HI, El-Shazly HH, Badr A. 2020. Role of salicylic acid in biotic and abiotic stress tolerance in plants. In Plant Phenolics in Sustainable Agriculture, eds. Lone R, Shuab R, Kamili A. Vol 1. Singapore: Springer. pp. 533−54. doi: 10.1007/978-981-15-4890-1_23 |
[65] |
Goossens J, Fernández-Calvo P, Schweizer F, Goossens A. 2016. Jasmonates: signal transduction components and their roles in environmental stress responses. Plant Molecular Biology 91:673−89 doi: 10.1007/s11103-016-0480-9 |
[66] |
Chauhan P, Mir RA, Khah MA. 2022. Ascorbate-glutathione cycle: nitric oxide and phytohormone interactions for plant stress tolerance. In Nitric Oxide in Plants: A Molecule with Dual Roles, eds. Ahanger MA, Ahmad P. Hoboken, USA:John Wiley & Sons. pp. 148−78. doi: 10.1002/9781119800156.ch8 |
[67] |
Dias AS. 2021. Development of phenylalanine hydroxylase enzymosomes for the treatment of phenylketonuria. Thesis. University of Lisboa, Portugal. |
[68] |
Talaat NB. 2019. Role of reactive oxygen species signaling in plant growth and development. In: Reactive oxygen, nitrogen and sulfur species in plants: production, metabolism, signaling and defense mechanisms, eds. Hasanuzzaman M, Fotopoulos V, Nahar K, Fujita M. Hoboken, USA: John Wiley & Sons. pp. 225−66. doi: 10.1002/9781119468677.ch10 |
[69] |
Zulfiqar F, Ashraf M. 2022. Antioxidants as modulators of arsenic-induced oxidative stress tolerance in plants: An overview. Journal of Hazardous Materials 427:127891 doi: 10.1016/j.jhazmat.2021.127891 |
[70] |
Niyogi KK. 1993. Molecular and genetic analysis of anthranilate synthase in Arabidopsis thaliana. Massachusetts Institute of Technology, Cambridge, Massachusetts, United States. |
[71] |
Antico CJ, Colon C, Banks T, Ramonell KM. 2012. Insights into the role of jasmonic acid-mediated defenses against necrotrophic and biotrophic fungal pathogens. Frontiers in Biology 7:48−56 doi: 10.1007/s11515-011-1171-1 |
[72] |
Wang C, Leng X, Zhang W, Fang J. 2017. The regulatory and signaling roles of glutathione in modulating abiotic stress responses and tolerance. In Glutathione in plant growth, development, and stress tolerance, eds. Hossain M, Mostofa M, Diaz-Vivancos P, Burritt D, Fujita M, et al. Cham: Springer. pp. 147−69. doi: 10.1007/978-3-319-66682-2_7 |
[73] |
Bartoli CG, Casalongué CA, Simontacchi M, Marquez-Garcia B, Foyer CH. 2013. Interactions between hormone and redox signalling pathways in the control of growth and cross tolerance to stress. Environmental and Experimental Botany 94:73−88 doi: 10.1016/j.envexpbot.2012.05.003 |
[74] |
Brunetti C, Guidi L, Sebastiani F, Tattini M. 2015. Isoprenoids and phenylpropanoids are key components of the antioxidant defense system of plants facing severe excess light stress. Environmental and Experimental Botany 119:54−62 doi: 10.1016/j.envexpbot.2015.04.007 |
[75] |
Michalak A. 2006. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish Journal of Environmental Studies 15(4):523−30 |
[76] |
Ortiz-Espín A, Sánchez-Guerrero A, Sevilla F, Jiménez A. 2017. The role of ascorbate in plant growth and development. In Ascorbic acid in plant growth, development and stress tolerance, eds. Hossain M, Munné-Bosch S, Burritt D, Diaz-Vivancos P, Fujita M, et al. Cham: Springer. pp. 25−45. doi: 10.1007/978-3-319-74057-7_2 |
[77] |
Jhanji S, Goyal E, Chumber M, Kaur G. 2024. Exploring fine tuning between phytohormones and ROS signaling cascade in regulation of seed dormancy, germination and seedling development. Plant Physiology and Biochemistry 207:108352 doi: 10.1016/j.plaphy.2024.108352 |
[78] |
Kuźniak E, Kopczewski T, Chojak-Koźniewska J. 2017. Ascorbate-glutathione cycle and biotic stress tolerance in plants. In Ascorbic acid in plant growth, development and stress tolerance, eds. Hossain M, Munné-Bosch S, Burritt D, Diaz-Vivancos P, Fujita M, et al. Cham: Springer. pp. 201−31. doi: 10.1007/978-3-319-74057-7_8 |
[79] |
Macknight RC, Laing WA, Bulley SM, Broad RC, Johnson AAT, Hellens RP. 2017. Increasing ascorbate levels in crops to enhance human nutrition and plant abiotic stress tolerance. Current Opinion in Biotechnology 44:153−60 doi: 10.1016/j.copbio.2017.01.011 |
[80] |
Sansome FW, Zilva SS. 1933. Polyploidy and vitamin C. Biochemical Journal 27:1935 doi: 10.1042/bj0271935 |
[81] |
Ishikawa T, Shigeoka S. 2008. Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Bioscience, Biotechnology, and Biochemistry 72:1143−54 doi: 10.1271/bbb.80062 |
[82] |
Prajapati P, Gupta P, Kharwar RN, Seth CS. 2023. Nitric oxide mediated regulation of ascorbate-glutathione pathway alleviates mitotic aberrations and DNA damage in Allium cepa L. under salinity stress. International Journal of Phytoremediation 25:403−14 doi: 10.1080/15226514.2022.2086215 |
[83] |
Wang J, Lian W, Cao Y, Wang X, Wang G, et al. 2018. Overexpression of BoNAC019, a NAC transcription factor from Brassica oleracea, negatively regulates the dehydration response and anthocyanin biosynthesis in Arabidopsis. Scientific Reports 8:13349 doi: 10.1038/s41598-018-31690-1 |
[84] |
Rosado-Souza L, Fernie AR, Aarabi F. 2020. Ascorbate and thiamin: metabolic modulators in plant acclimation responses. Plants 9:101 doi: 10.3390/plants9010101 |
[85] |
Chiaiese P, Corrado G, Minutolo M, Barone A, Errico A. 2019. Transcriptional regulation of ascorbic acid during fruit ripening in pepper (Capsicum annuum) varieties with low and high antioxidants content. Plants 8:206 doi: 10.3390/plants8070206 |
[86] |
Dykes IM, Emanueli C. 2017. Transcriptional and post-transcriptional gene regulation by long non-coding RNA. Genomics, Proteomics and Bioinformatics 15:177−86 doi: 10.1016/j.gpb.2016.12.005 |
[87] |
Baier M, Pitsch NT, Mellenthin M, Guo W. 2010. Regulation of genes encoding chloroplast antioxidant enzymes in comparison to regulation of the extra-plastidic antioxidant defense system. In Ascorbate-glutathione pathway and stress tolerance in plants, eds. Anjum N, Chan MT, Umar S. Dordrecht: Springer. pp. 337−86. doi: 10.1007/978-90-481-9404-9_13 |
[88] |
Khan WU, Khan LU, Chen D, Chen F. 2023. Comparative analyses of superoxide dismutase (SOD) gene family and expression profiling under multiple abiotic stresses in water lilies. Horticulturae 9:781 doi: 10.3390/horticulturae9070781 |
[89] |
Knorre DG, Kudryashova NV, Godovikova TS. 2009. Chemical and functional aspects of posttranslational modification of proteins. Acta Naturae 1:29−51 |
[90] |
Foyer CH, Kyndt T, Hancock RD. 2020. Vitamin C in plants: novel concepts, new perspectives, and outstanding issues. Antioxidants & Redox Signaling 32:463−85 doi: 10.1089/ars.2019.7819 |
[91] |
Bulley S, Laing W. 2016. The regulation of ascorbate biosynthesis. Current Opinion in Plant Biology 33:15−22 doi: 10.1016/j.pbi.2016.04.010 |
[92] |
Wishart K. 2017. Increased micronutrient requirements during physiologically demanding situations: Review of the current evidence. Vitamins & Minerals 6:2376−1318.1000166 |
[93] |
Sofo A, Scopa A, Nuzzaci M, Vitti A. 2015. Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. International Journal of Molecular Sciences 16:13561−78 doi: 10.3390/ijms160613561 |
[94] |
García-Caparrós P, De Filippis L, Gul A, Hasanuzzaman M, Ozturk M, et al. 2021. Oxidative stress and antioxidant metabolism under adverse environmental conditions: a review. The Botanical Review 87:421−66 doi: 10.1007/s12229-020-09231-1 |
[95] |
Awasthi R, Bhandari K, Nayyar H. 2015. Temperature stress and redox homeostasis in agricultural crops. Frontiers in Environmental Science 3:11 doi: 10.3389/fenvs.2015.00011 |
[96] |
Ahanger MA, Morad-Talab N, Abd-Allah EF, Ahmad P, Hajiboland R. 2016. Plant growth under drought stress: Significance of mineral nutrients. In Water stress and crop plants: a sustainable approach, ed. Ahmad P. Hoboken, USA: John Wiley & Sons. 649−68. doi: 10.1002/9781119054450.ch37 |
[97] |
Franceschi VR, Tarlyn NM. 2002. L-Ascorbic acid is accumulated in source leaf phloem and transported to sink tissues in plants. Plant Physiology 130:649−56 doi: 10.1104/pp.007062 |
[98] |
Wang Y, Mostafa S, Zeng W, Jin B. 2021. Function and mechanism of jasmonic acid in plant responses to abiotic and biotic stresses. International Journal of Molecular Sciences 22:8568 doi: 10.3390/ijms22168568 |
[99] |
Hussain S, Rao MJ, Anjum MA, Ejaz S, Zakir I, et al. 2019. Oxidative stress and antioxidant defense in plants under drought conditions. In Plant abiotic stress tolerance: agronomic, molecular and biotechnological approaches, eds. Hasanuzzaman M, Hakeem K, Nahar K, Alharby H. Cham: Springer. pp. 207−19. doi: 10.1007/978-3-030-06118-0_9 |
[100] |
Boubakri H. 2017. The role of ascorbic acid in plant–pathogen interactions. In: Ascorbic acid in plant growth, development and stress tolerance, eds. Hossain M, Munné-Bosch S, Burritt D, Diaz-Vivancos P, Fujita M, et al. Cham: Springer. pp. 255−71. doi: 10.1007/978-3-319-74057-7_10 |
[101] |
Yu X, Zhang W, Zhang Y, Zhang X, Lang D, et al. 2018. The roles of methyl jasmonate to stress in plants. Functional Plant Biology 46:197−212 doi: 10.1071/FP18106 |
[102] |
Chaturvedi S, Khan S, Bhunia RK, Kaur K, Tiwari S. 2022. Metabolic engineering in food crops to enhance ascorbic acid production: crop biofortification perspectives for human health. Physiology and Molecular Biology of Plants 28:871−84 doi: 10.1007/s12298-022-01172-w |
[103] |
Agius F, González-Lamothe R, Caballero JL, Muñoz-Blanco J, Botella MA, et al. 2003. Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nature Biotechnology 21:177−81 doi: 10.1038/nbt777 |
[104] |
Hancock RD, Viola R. 2005. Biosynthesis and catabolism of L-ascorbic acid in plants. Critical Reviews in Plant Sciences 24:167−88 doi: 10.1080/07352680591002165 |
[105] |
Wai AH, Naing AH, Lee DJ, Kim CK, Chung MY. 2020. Molecular genetic approaches for enhancing stress tolerance and fruit quality of tomato. Plant Biotechnology Reports 14:515−37 doi: 10.1007/s11816-020-00638-1 |
[106] |
Ding S, Lu Q, Zhang Y, Yang Z, Wen X, et al. 2009. Enhanced sensitivity to oxidative stress in transgenic tobacco plants with decreased glutathione reductase activity leads to a decrease in ascorbate pool and ascorbate redox state. Plant Molecular Biology 69:577−92 doi: 10.1007/s11103-008-9440-3 |
[107] |
Ishikawa T, Dowdle J, Smirnoff N. 2006. Progress in manipulating ascorbic acid biosynthesis and accumulation in plants. Physiologia Plantarum 126:343−55 doi: 10.1111/j.1399-3054.2006.00640.x |
[108] |
Castro JC, Castro CG, Cobos M. 2023. Genetic and biochemical strategies for regulation of L-ascorbic acid biosynthesis in plants through the L-galactose pathway. Frontiers in Plant Science 14:1099829 doi: 10.3389/fpls.2023.1099829 |
[109] |
Zhou Y, Zhang J, Xiong X, Cheng ZM, Chen F. 2022. De novo assembly of plant complete genomes. Tropical Plants 1:1−8 doi: 10.48130/tp-2022-0007 |
[110] |
Li X, Ye J, Munir S, Yang T, Chen W, et al. 2019. Biosynthetic gene pyramiding leads to ascorbate accumulation with enhanced oxidative stress tolerance in tomato. International Journal of Molecular Sciences 20:1558 doi: 10.3390/ijms20071558 |
[111] |
Fenech M, Amaya I, Valpuesta V, Botella MA. 2019. Vitamin C content in fruits: Biosynthesis and regulation. Frontiers in Plant Science 9:2006 doi: 10.3389/fpls.2018.02006 |
[112] |
Mellidou I, Kanellis AK. 2023. Deep inside the genetic regulation of ascorbic acid during fruit ripening and postharvest storage. Postharvest Biology and Technology 204:112436 doi: 10.1016/j.postharvbio.2023.112436 |
[113] |
Zhang Y. 2012. Ascorbic acid in plants: biosynthesis, regulation and enhancement. Berlin, Heidelberg, Germany: Springer Science & Business Media |
[114] |
Liu Q, Yang F, Zhang J, Liu H, Rahman S, et al. 2021. Application of CRISPR/Cas9 in crop quality improvement. International Journal of Molecular Sciences 22:4206 doi: 10.3390/ijms22084206 |
[115] |
Rommens CM. 2007. Intragenic crop improvement: combining the benefits of traditional breeding and genetic engineering. Journal of Agricultural and Food Chemistry 55:4281−88 doi: 10.1021/jf0706631 |
[116] |
Zhang J, He S, Wang W, Chen F, Li Z. 2023. FTGD: a machine learning method for flowering-time gene prediction. Tropical Plants 2:23 doi: 10.48130/tp-2023-0023 |
[117] |
He S, Liu E, Chen F, Li Z. 2023. SCCGs_Prediction: a machine learning tool for prediction of sulfur-containing compound associated genes. Tropical Plants 2:18 doi: 10.48130/tp-2023-0018 |
[118] |
Abeysuriya HI, Bulugahapitiya VP, Loku Pulukkuttige JL. 2020. Total vitamin C, ascorbic acid, dehydroascorbic acid, antioxidant properties, and iron content of underutilized and commonly consumed fruits in Sri Lanka. International Journal of Food Science 2020:4783029 doi: 10.1155/2020/4783029 |
[119] |
Xu J, Vidyarthi SK, Bai W, Pan Z. 2019. Nutritional constituents, health benefits and processing of Rosa Roxburghii: A review. Journal of Functional Foods 60:103456 doi: 10.1016/j.jff.2019.103456 |
[120] |
Pissard A, Fernández Pierna JA, Baeten V, Sinnaeve G, Lognay G, et al. 2013. Non-destructive measurement of vitamin C, total polyphenol and sugar content in apples using near-infrared spectroscopy. Journal of the Science of Food and Agriculture 93:238−44 doi: 10.1002/jsfa.5779 |
[121] |
Popova A. 2019. Comparison of vitamin C content of commercially available fresh fruits. Asian Food Science Journal 13:1−6 doi: 10.9734/afsj/2019/v13i230100 |
[122] |
Graham R, Senadhira D, Beebe S, Iglesias C, Monasterio I. 1999. Breeding for micronutrient density in edible portions of staple food crops: conventional approaches. Field Crops Research 60:57−80 doi: 10.1016/S0378-4290(98)00133-6 |
[123] |
da Silva Dias JC. 2014. Guiding strategies for breeding vegetable cultivars. Agricultural Sciences 5:9 doi: 10.4236/as.2014.51002 |
[124] |
Ali B, Pantha S, Acharya R, Ueda Y, Wu LB, et al. 2019. Enhanced ascorbate level improves multi-stress tolerance in a widely grown Indica rice variety without compromising its agronomic characteristics. Journal of Plant Physiology 240:152998 doi: 10.1016/j.jplph.2019.152998 |
[125] |
Boopathi NM. 2013. Genetic mapping and marker assisted selection. New Delhi: Springer. doi: 10.1007/978-81-322-0958-4 |
[126] |
Tiwari JK, Yerasu SR, Rai N, Singh DP, Singh AK, et al. 2022. 'Progress in marker-assisted selection to genomics-assisted breeding in tomato. Critical Reviews in Plant Sciences 41:321−50 doi: 10.1080/07352689.2022.2130361 |
[127] |
Varshney RK, Dubey A. 2009. Novel genomic tools and modern genetic and breeding approaches for crop improvement. Journal of Plant Biochemistry and Biotechnology 18:127−38 doi: 10.1007/BF03263311 |
[128] |
Strobbe S, De Lepeleire J, Van Der Straeten D. 2018. From in planta function to vitamin-rich food crops: the ACE of biofortification. Frontiers in Plant Science 9:1862 doi: 10.3389/fpls.2018.01862 |
[129] |
Shu DF, Wang LY, Duan M, Deng YS, Meng QW. 2011. Antisense-mediated depletion of tomato chloroplast glutathione reductase enhances susceptibility to chilling stress. Plant Physiology and Biochemistry 49:1228−37 doi: 10.1016/j.plaphy.2011.04.005 |
[130] |
Zhu C, Sanahuja G, Yuan D, Farré G, Arjó G, et al. 2013. Biofortification of plants with altered antioxidant content and composition: genetic engineering strategies. Plant Biotechnology Journal 11:129−41 doi: 10.1111/j.1467-7652.2012.00740.x |
[131] |
Asrey R, Barman K, Prajapati U, Sharma S, Yadav A. 2021. Genetically modified fruit and vegetable-An overview on senescence regulation, postharvest nutraceutical quality preservation and shelf-life extension. The Journal of Horticultural Science and Biotechnology 96:271−87 doi: 10.1080/14620316.2020.1845986 |
[132] |
Tamim SA, Li F, Wang Y, Shang L, Zhang X, et al. 2022. Effect of shading on ascorbic acid accumulation and biosynthetic gene expression during tomato fruit development and ripening. Vegetable Research 2:1 doi: 10.48130/vr-2022-0001 |
[133] |
Mellidou I, Koukounaras A, Kostas S, Patelou E, Kanellis AK. 2021. Regulation of vitamin C accumulation for improved tomato fruit quality and alleviation of abiotic stress. Genes 12:694 doi: 10.3390/genes12050694 |
[134] |
Maqbool MA, Aslam M, Beshir A, Khan MS. 2018. Breeding for provitamin A biofortification of maize (Zea mays L.). Plant Breeding 137:451−69 doi: 10.1111/pbr.12618 |
[135] |
Todaka D, Shinozaki K, Yamaguchi-Shinozaki K. 2015. Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Frontiers in Plant Science 6:84 doi: 10.3389/fpls.2015.00084 |
[136] |
George GM, Ruckle ME, Abt MR, Bull SE. 2017. Ascorbic acid biofortification in crops. In: Ascorbic acid in plant growth, development and stress tolerance, eds. Hossain M, Munné-Bosch S, Burritt D, Diaz-Vivancos P, Fujita M, et al. Cham: Springer. pp. 375−415. doi: 10.1007/978-3-319-74057-7_15 |
[137] |
Rakkammal K, Priya A, Pandian S, Maharajan T, Rathinapriya P, et al. 2022. Conventional and omics approaches for understanding the abiotic stress response in cereal crops—an updated overview. Plants 11:2852 doi: 10.3390/plants11212852 |
[138] |
He S, Dong W, Chen J, Zhang J, Lin W, et al. 2024. DataColor: unveiling biological data relationships through distinctive color mapping. Horticulture Research 11:uhad273 doi: 10.1093/hr/uhad273 |
[139] |
Li Z, Wang C, Wang S, Wang W, Chen F. 2024. HortDB V1.0: a genomic database of horticultural plants. Horticulture Research 11:uhae224 doi: 10.1093/hr/uhae224 |
[140] |
Lima-Silva V, Rosado A, Amorim-Silva V, Muñoz-Mérida A, Pons C, et al. 2012. Genetic and genome-wide transcriptomic analyses identify co-regulation of oxidative response and hormone transcript abundance with vitamin C content in tomato fruit. BMC Genomics 13:187 doi: 10.1186/1471-2164-13-187 |
[141] |
Arbona V, Manzi M, de Ollas C, Gómez-Cadenas A. 2013. Metabolomics as a tool to investigate abiotic stress tolerance in plants. International Journal of Molecular Sciences, 14:4885−911 doi: 10.3390/ijms14034885 |
[142] |
Aarabi F, Ghigi A, Ahchige MW, Bulut M, Geigenberger P, et al. 2023. Genome-wide association study unveils ascorbate regulation by PAS/LOV PROTEIN during high light acclimation. Plant Physiology 193:2037−54 doi: 10.1093/plphys/kiad323 |
[143] |
Deslous P. 2018. Towards the characterization of regulators involved in the metabolism of ascorbic acid in tomato: Impact of environmental conditions on plant adaptation. Université de Bordeaux |
[144] |
Sandalio LM, Gotor C, Romero LC, Romero-Puertas MC. 2019. Multilevel regulation of peroxisomal proteome by post-translational modifications. International Journal of Molecular Sciences, 20:4881 doi: 10.3390/ijms20194881 |
[145] |
Rodziewicz P, Swarcewicz B, Chmielewska K, Wojakowska A, Stobiecki M. 2014. Influence of abiotic stresses on plant proteome and metabolome changes. Acta Physiologiae Plantarum 36:1−19 doi: 10.1007/s11738-013-1402-y |
[146] |
Tanou G, Ziogas V, Belghazi M, Christou A, Filippou P, et al. 2014. Polyamines reprogram oxidative and nitrosative status and the proteome of citrus plants exposed to salinity stress. Plant Cell & Environment 37:864−85 doi: 10.1111/pce.12204 |
[147] |
Perumal V, Khatib A, Ahmed QU, Uzir BF, Abas F, et al. 2021. Antioxidants profile of Momordica charantia fruit extract analyzed using LC-MS-QTOF-based metabolomics. Food Chemistry: Molecular Sciences 2:100012 doi: 10.1016/j.fochms.2021.100012 |
[148] |
Li Z, Liu Q, Wu C, Yuan Y, Ni X, et al. 2024. Volatile organic compounds produced by Metschnikowia pulcherrima yeast T-2 inhibited the growth of Botrytis cinerea in postharvest blueberry fruits. Horticultural Plant Journal In Press doi: 10.1016/j.hpj.2023.12.003 |
[149] |
Caverzan A, Passaia G, Rosa SB, Ribeiro CW, Lazzarotto F, et al. 2012. Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genetics and Molecular Biology 35:1011−19 doi: 10.1590/S1415-47572012000600016 |
[150] |
Kruger NJ, Masakapalli SK, Ratcliffe RG. 2012. Strategies for investigating the plant metabolic network with steady-state metabolic flux analysis: lessons from an Arabidopsis cell culture and other systems. Journal of Experimental Botany 63:2309−23 doi: 10.1093/jxb/err382 |
[151] |
Zou W, Liu L, Zhang J, Yang H, Zhou M, et al. 2012. Reconstruction and analysis of a genome-scale metabolic model of the vitamin C producing industrial strain Ketogulonicigenium vulgare WSH-001. Journal of Biotechnology 161:42−48 doi: 10.1016/j.jbiotec.2012.05.015 |
[152] |
Sweetlove LJ, Fernie AR. 2005. Regulation of metabolic networks: understanding metabolic complexity in the systems biology era. New Phytologist 168:9−24 doi: 10.1111/j.1469-8137.2005.01513.x |
[153] |
Wong DCJ, Sweetman C, Ford CM. 2014. Annotation of gene function in citrus using gene expression information and co-expression networks. BMC Plant Biology 14:186 doi: 10.1186/1471-2229-14-186 |
[154] |
Decros G. 2022. Role of redox signaling by ascorbate in the performance of tomato fruit. Thesis. Université de Bordeaux, Nouvelle-Aquitaine, France. |
[155] |
Mangal V, Lal MK, Tiwari RK, Altaf MA, Sood S, et al. 2023. A comprehensive and conceptual overview of omics-based approaches for enhancing the resilience of vegetable crops against abiotic stresses. Planta 257:80 doi: 10.1007/s00425-023-04111-5 |
[156] |
Zhuang J, Zhang J, Hou XL, Wang F, Xiong AS. 2014. Transcriptomic, proteomic, metabolomic and functional genomic approaches for the study of abiotic stress in vegetable crops. Critical Reviews in Plant Sciences 33:225−37 doi: 10.1080/07352689.2014.870420 |
[157] |
Foyer CH, Noctor G. 2009. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxidants & Redox Signaling 11:861−905 doi: 10.1089/ars.2008.2177 |
[158] |
Caarls L, Pieterse CMJ, Van Wees SCM. 2015. How salicylic acid takes transcriptional control over jasmonic acid signaling. Frontiers in Plant Science 6:170 doi: 10.3389/fpls.2015.00170 |
[159] |
Savoi S, Wong DCJ, Degu A, Herrera JC, Bucchetti B, et al. 2017. Multi-omics and integrated network analyses reveal new insights into the systems relationships between metabolites, structural genes, and transcriptional regulators in developing grape berries (Vitis vinifera L.) exposed to water deficit. Frontiers in Plant Science 8:1124 doi: 10.3389/fpls.2017.01124 |
[160] |
Carr AC, Vissers MCM. 2013. Synthetic or food-derived vitamin C—are they equally bioavailable? Nutrients 5:4284−304 doi: 10.3390/nu5114284 |
[161] |
Yang W, Xu H. 2016. Industrial fermentation of vitamin C. In: Industrial Biotechnology of vitamins, biopigments, and antioxidants, eds. Vandamme EJ, Revuelta JL. Hoboken, New Jersey, USA: Wiley-VCH Verlag GmbH & Co. KGaA. pp. 161−92. doi: 10.1002/9783527681754.ch7 |
[162] |
Mahmood U, Li X, Fan Y, Chang W, Niu Y, et al. 2022. Multi-omics revolution to promote plant breeding efficiency. Frontiers in Plant Science 13:1062952 doi: 10.3389/fpls.2022.1062952 |
[163] |
Chandrasekaran M, Boopathi T, Paramasivan M. 2021. A status-quo review on CRISPR-Cas9 gene editing applications in tomato. International Journal of Biological Macromolecules 190:120−29 doi: 10.1016/j.ijbiomac.2021.08.169 |
[164] |
Dong C, Xi Y, Satheesh V, Lei M. 2023. Advances in CRISPR/Cas technologies and their application in plants. Tropical Plants, 2:2 doi: 10.48130/tp-2023-0002 |
[165] |
Anwar A, Kim JK. 2020. Transgenic breeding approaches for improving abiotic stress tolerance: recent progress and future perspectives. International Journal of Molecular Sciences 21:2695 doi: 10.3390/ijms21082695 |