[1] |
Makkar HPS. 2018. Feed demand landscape and implications of food-not feed strategy for food security and climate change. Animal 12:1744−54 doi: 10.1017/S175173111700324X |
[2] |
Amata I. 2014. The use of non-conventional feed resources (NCFR) for livestock feeding in the tropics: a review. Journal of Global Biosciences 3(2):604−13 |
[3] |
Jiménez-Moreno E, González-Alvarado JM, de Coca-Sinova A, Lázaro RP, Cámara L, et al. 2019. Insoluble fiber sources in mash or pellets diets for young broilers. 2. Effects on gastrointestinal tract development and nutrient digestibility. Poultry Science 98:2531−47 doi: 10.3382/ps/pey599 |
[4] |
Jiménez-Moreno E, de Coca-Sinova A, González-Alvarado JM, Mateos GG. 2016. Inclusion of insoluble fiber sources in mash or pellet diets for young broilers. 1. Effects on growth performance and water intake. Poultry Science 95:41−52 doi: 10.3382/ps/pev309 |
[5] |
Luo X, Wang Q, Zheng B, Lin L, Chen B, et al. 2017. Hydration properties and binding capacities of dietary fibers from bamboo shoot shell and its hypolipidemic effects in mice. Food and Chemical Toxicology 109:1003−9 doi: 10.1016/j.fct.2017.02.029 |
[6] |
Shang Q, Liu S, Liu H, Mahfuz S, Piao X. 2021. Impact of sugar beet pulp and wheat bran on serum biochemical profile, inflammatory responses and gut microbiota in sows during late gestation and lactation. Journal of Animal Science and Biotechnology 12:54 doi: 10.1186/s40104-021-00573-3 |
[7] |
Adibmoradi M, Navidshad B, Faseleh Jahromi M. 2016. The effect of moderate levels of finely ground insoluble fibre on small intestine morphology, nutrient digestibility and performance of broiler chickens. Italian Journal of Animal Science 15:310−17 doi: 10.1080/1828051X.2016.1147335 |
[8] |
Kheravii SK, Swick RA, Choct M, Wu SB. 2017. Dietary sugarcane bagasse and coarse particle size of corn are beneficial to performance and gizzard development in broilers fed normal and high sodium diets. Poultry Science 96:4006−16 doi: 10.3382/ps/pex225 |
[9] |
Rezaei M, Torshizi MAK, Rouzbehan Y. 2011. The influence of different levels of micronized insoluble fiber on broiler performance and litter moisture. Poultry Science 90:2008−12 doi: 10.3382/ps.2011-01352 |
[10] |
Donadelli RA, Stone DA, Aldrich CG, Beyer RS. 2019. Effect of fiber source and particle size on chick performance and nutrient utilization. Poultry Science 98:5820−30 doi: 10.3382/ps/pez382 |
[11] |
Singh AK, Kim WK. 2021. Effects of dietary fiber on nutrients utilization and gut health of poultry: a review of challenges and opportunities. Animals 11:181 doi: 10.3390/ani11010181 |
[12] |
Nassar MK, Lyu S, Zentek J, Brockmann GA. 2019. Dietary fiber content affects growth, body composition, and feed intake and their associations with a major growth locus in growing male chickens of an advanced intercross population. Livestock Science 227:135−42 doi: 10.1016/j.livsci.2019.07.015 |
[13] |
Sozcu A. 2019. Growth performance, pH value of gizzard, hepatic enzyme activity, immunologic indicators, intestinal histomorphology, and cecal microflora of broilers fed diets supplemented with processed lignocellulose. Poultry Science 98:6880−87 doi: 10.3382/ps/pez449 |
[14] |
He MX, Wang JL, Qin H, Shui ZX, Zhu QL, et al. 2014. Bamboo: A new source of carbohydrate for biorefinery. Carbohydrate Polymers 111:645−54 doi: 10.1016/j.carbpol.2014.05.025 |
[15] |
Lancefield CS, Panovic I, Deuss PJ, Barta K, Westwood NJ. 2017. Pre-treatment of lignocellulosic feedstocks using biorenewable alcohols: towards complete biomass valorisation. Green Chemistry 19:202−14 doi: 10.1039/C6GC02739C |
[16] |
Sims JA, Parsons JL, Bissell HA, Sikes RS, Ouellette JR, et al. 2007. Determination of bamboo-diet digestibility and fecal output by giant pandas. Ursus 18:38−45 doi: 10.2192/1537-6176(2007)18[38:DOBDAF]2.0.CO;2 |
[17] |
Felisberto MHF, Miyake PSE, Beraldo AL, Clerici MTPS. 2017. Young bamboo culm: Potential food as source of fiber and starch. Food Research International 101:96−102 doi: 10.1016/j.foodres.2017.08.058 |
[18] |
Ge Q, Li H, Wu P, Sha R, Xiao Z, et al. 2020. Investigation of physicochemical properties and antioxidant activity of ultrafine bamboo leaf powder prepared by ball milling. Journal of Food Processing and Preservation 44:e14506 doi: 10.1111/jfpp.14506 |
[19] |
Wu W, Hu J, Gao H, Chen H, Fang X, et al. 2020. The potential cholesterol-lowering and prebiotic effects of bamboo shoot dietary fibers and their structural characteristics. Food Chemistry 332:127372 doi: 10.1016/j.foodchem.2020.127372 |
[20] |
Okano K, Ohkoshi N, Nishiyama A, Usagawa T, Kitagawa M. 2009. Improving the nutritive value of madake bamboo, Phyllostachys bambusoides, for ruminants by culturing with the white-rot fungus Ceriporiopsis subvermispora. Animal Feed Science and Technology 152:278−85 doi: 10.1016/j.anifeedsci.2009.04.021 |
[21] |
Oguri M, Okano K, Ieki H, Kitagawa M, Tadokoro O, et al. 2013. Feed intake, digestibility, nitrogen utilization, ruminal condition and blood metabolites in wethers fed ground bamboo pellets cultured with white‐rot fungus (Ceriporiopsis subvermispora) and mixed with soybean curd residue and soy sauce cake. Animal Science Journal 84:650−55 doi: 10.1111/asj.12054 |
[22] |
Aftab U, Bedford MR. 2018. The use of NSP enzymes in poultry nutrition: myths and realities. World's Poultry Science Journal 74:277−86 doi: 10.1017/S0043933918000272 |
[23] |
Zhao G, Zhang R, Dong L, Huang F, Tang X, et al. 2018. Particle size of insoluble dietary fiber from rice bran affects its phenolic profile, bioaccessibility and functional properties. LWT 87:450−56 doi: 10.1016/j.lwt.2017.09.016 |
[24] |
Bao K, Wang K, Wang X, Zhang T, Liu H, et al. 2017. Effects of dietary manganese supplementation on nutrient digestibility and production performance in male sika deer (Cervus Nippon). Animal Science Journal 88:463−67 doi: 10.1111/asj.12657 |
[25] |
Zhao JB, Zhang G, Dong WX, Zhang Y, Wang JJ, et al. 2019. Effects of dietary particle size and fiber source on nutrient digestibility and short chain fatty acid production in cannulated growing pigs. Animal Feed Science and Technology 258:114310 doi: 10.1016/j.anifeedsci.2019.114310 |
[26] |
Speroni CS, Bender ABB, Stiebe J, Ballus CA, Ávila PF, et al. 2020. Granulometric fractionation and micronization: A process for increasing soluble dietary fiber content and improving technological and functional properties of olive pomace. LWT 130:109526 doi: 10.1016/j.lwt.2020.109526 |
[27] |
Malyar RM, Naseri E, Li H, Ali I, Farid RA, et al. 2021. Hepatoprotective effects of selenium-enriched probiotics supplementation on heat-stressed wistar rat through anti-inflammatory and antioxidant effects. Biological Trace Element Research 199:3445−56 doi: 10.1007/s12011-020-02475-3 |
[28] |
Mohammad Malyar R, Li H, Enayatullah H, Hou L, Ahmad Farid R, et al. 2019. Zinc-enriched probiotics enhanced growth performance, antioxidant status, immune function, gene expression, and morphological characteristics of Wistar rats raised under high ambient temperature. 3 Biotech 9:291 doi: 10.1007/s13205-019-1819-0 |
[29] |
Malyar RM, Wei Q, Hou L, Elsaid SH, Zhang Y, et al. 2024. Fermented bamboo powder activates gut odorant receptors, and promotes intestinal health and growth performance of dwarf yellow-feathered broiler chickens. Poultry Science 103:103570 doi: 10.1016/j.psj.2024.103570 |
[30] |
Okrathok S, Khempaka S. 2020. Modified-dietary fiber from cassava pulp reduces abdominal fat and meat cholesterol contents without affecting growth performance of broiler chickens. Journal of Applied Poultry Research 29:229−39 doi: 10.1016/j.japr.2019.10.009 |
[31] |
Shirzadegan K, Taheri HR. 2017. Insoluble Fibers Affected the Performance, Carcass Characteristics and Serum Lipid of Broiler Chickens Fed Wheat-Based Diet. Iranian Journal of Applied Animal Science 7:109−17 |
[32] |
Röhe I, Metzger F, Vahjen W, Brockmann GA, Zentek J. 2020. Effect of feeding different levels of lignocellulose on performance, nutrient digestibility, excreta dry matter, and intestinal microbiota in slow growing broilers. Poultry Science 99:5018−26 doi: 10.1016/j.psj.2020.06.053 |
[33] |
Reyns GE, Janssens KA, Buyse J, Kühn ER, Darras VM. 2002. Changes in thyroid hormone levels in chicken liver during fasting and refeeding. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 132:239−45 doi: 10.1016/S1096-4959(01)00528-0 |
[34] |
Anh NTL, Kunhareang S, Duangjinda M. 2015. Association of chicken growth hormones and insulin-like growth factor gene polymorphisms with growth performance and carcass traits in Thai broilers. Asian-Australasian Journal of Animal Sciences 28:1686−95 doi: 10.5713/ajas.15.0028 |
[35] |
Balan P, Sik-Han K, Moughan PJ. 2019. Impact of oral immunoglobulins on animal health-A review. Animal Science Journal 90:1099−110 doi: 10.1111/asj.13258 |
[36] |
Murtaugh MP, Baarsch MJ, Zhou Y, Scamurra RW, Lin G. 1996. Inflammatory cytokines in animal health and disease. Veterinary Immunology and Immunopathology 54:45−55 doi: 10.1016/S0165-2427(96)05698-X |
[37] |
Ogbuewu IP, Emenalom OO, Okoli IC. 2017. Alternative feedstuffs and their effects on blood chemistry and haematology of rabbits and chickens: a review. Comparative Clinical Pathology 26:277−86 doi: 10.1007/s00580-015-2210-0 |
[38] |
Ali I, Raza A, Ahmad MA, Li L. 2022. Nutrient sensing mechanism of short-chain fatty acids in mastitis control. Microbial Pathogenesis 170:105692 doi: 10.1016/j.micpath.2022.105692 |
[39] |
Takayanagi K. 2011. Prevention of Adiposity by the Oral Administration of β-Cryptoxanthin. Frontiers in Neurology 2:67 doi: 10.3389/fneur.2011.00067 |
[40] |
Liu Z, Li N, Zhou X, Zheng Z, Zhang C, et al. 2022. Effects of Fermented Bamboo Powder Supplementation on Serum Biochemical Parameters, Immune Indices, and Fecal Microbial Composition in Growing-Finishing Pigs. Animals 12:3127 doi: 10.3390/ani12223127 |
[41] |
Chu GM, Jung CK, Kim HY, Ha JH, Kim JH, et al. 2013. Effects of bamboo charcoal and bamboo vinegar as antibiotic alternatives on growth performance, immune responses and fecal microflora population in fattening pigs. Animal Science Journal 84:113−20 doi: 10.1111/j.1740-0929.2012.01045.x |
[42] |
de Sousa-Pereira P, Woof JM. 2019. IgA: Structure, Function, and Developability. Antibodies 8:57 doi: 10.3390/antib8040057 |
[43] |
Heim KE, Tagliaferro AR, Bobilya DJ. 2002. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. The Journal of Nutritional Biochemistry 13:572−84 doi: 10.1016/S0955-2863(02)00208-5 |
[44] |
Zhang R, Shi X, Liu J, Jiang Y, Wu Y, et al. 2022. The effects of bamboo leaf flavonoids on growth performance, immunity, antioxidant status, and intestinal microflora of Chinese mitten crabs (Eriocheir sinensis). Animal Feed Science and Technology 288:115297 doi: 10.1016/j.anifeedsci.2022.115297 |
[45] |
Xie Z, Yu G, Yun Y, Zhang X, Shen M, et al. 2022. Effects of bamboo leaf extract on energy metabolism, antioxidant capacity, and biogenesis of small intestine mitochondria in broilers. Journal of Animal Science 101:skac391 doi: 10.1093/jas/skac391 |
[46] |
Shen M, Xie Z, Jia M, Li A, Han H, et al. 2019. Effect of Bamboo Leaf Extract on Antioxidant Status and Cholesterol Metabolism in Broiler Chickens. Animals 9:699 doi: 10.3390/ani9090699 |
[47] |
Jundi D, Coutanceau JP, Bullier E, Imarraine S, Fajloun Z, et al. 2023. Expression of olfactory receptor genes in non-olfactory tissues in the developing and adult zebrafish. Scientific Reports 13:4651 doi: 10.1038/s41598-023-30895-3 |
[48] |
Jiang Y, Gong NN, Hu XS, Ni MJ, Pasi R, et al. 2015. Molecular profiling of activated olfactory neurons identifies odorant receptors for odors in vivo. Nature Neuroscience 18:1446−54 doi: 10.1038/nn.4104 |
[49] |
Pluznick JL, Zou DJ, Zhang X, Yan Q, Rodriguez-Gil DJ, et al. 2009. Functional expression of the olfactory signaling system in the kidney. Proceedings of the National Academy of Sciences of the United States of America 106:2059−64 doi: 10.1073/pnas.0812859106 |
[50] |
Grison A, Zucchelli S, Urzì A, Zamparo I, Lazarevic D, et al. 2014. Mesencephalic dopaminergic neurons express a repertoire of olfactory receptors and respond to odorant-like molecules. BMC Genomics 15:729 doi: 10.1186/1471-2164-15-729 |
[51] |
Morton GJ, Meek TH, Schwartz MW. 2014. Neurobiology of food intake in health and disease. Nature Reviews Neuroscience 15:367−78 doi: 10.1038/nrn3745 |
[52] |
Imoto D, Yamamoto I, Matsunaga H, Yonekura T, Lee ML, et al. 2021. Refeeding activates neurons in the dorsomedial hypothalamus to inhibit food intake and promote positive valence. Molecular Metabolism 54:101366 doi: 10.1016/j.molmet.2021.101366 |
[53] |
Chen WY, Peng XL, Deng QS, Chen MJ, Du JL, et al. 2019. Role of olfactorily responsive neurons in the right dorsal habenula-ventral interpeduncular nucleus pathway in food-seeking behaviors of larval zebrafish. Neuroscience 404:259−67 doi: 10.1016/j.neuroscience.2019.01.057 |
[54] |
Stamatakis AM, Van Swieten M, Basiri ML, Blair GA, Kantak P, et al. 2016. Lateral hypothalamic area glutamatergic neurons and their projections to the lateral habenula regulate feeding and reward. The Journal of Neuroscience 36:302−11 doi: 10.1523/JNEUROSCI.1202-15.2016 |
[55] |
London E, Wester JC, Bloyd M, Bettencourt S, McBain CJ, et al. 2020. Loss of habenular Prkar2a reduces hedonic eating and increases exercise motivation. JCI Insight 5:141670 doi: 10.1172/jci.insight.141670 |
[56] |
Braun T, Voland P, Kunz L, Prinz C, Gratzl M. 2007. Enterochromaffin cells of the human gut: sensors for spices and odorants. Gastroenterology 132:1890−901 doi: 10.1053/j.gastro.2007.02.036 |
[57] |
Rogers GB, Keating DJ, Young RL, Wong ML, Licinio J, et al. 2016. From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Molecular Psychiatry 21:738−48 doi: 10.1038/mp.2016.50 |