[1]

Verdeil JL, Alemanno L, Niemenak N, Tranbarger TJ. 2007. Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends in Plant Science 12:245−52

doi: 10.1016/j.tplants.2007.04.002
[2]

Li SZ, Wang J, Jia SG, Wang K, Li HJ. 2023. Synthetic apomixis: from genetic basis to agricultural application. Seed Biology 2:10

doi: 10.48130/seedbio-2023-0010
[3]

Shen K, Qu M, Zhao P. 2023. The roads to haploid embryogenesis. Plants 12:243

doi: 10.3390/plants12020243
[4]

Radoeva T, Vaddepalli P, Zhang Z, Weijers D. 2019. Evolution, initiation, and diversity in early plant embryogenesis. Developmental Cell 50:533−43

doi: 10.1016/j.devcel.2019.07.011
[5]

Testillano PS. 2019. Microspore embryogenesis: targeting the determinant factors of stress-induced cell reprogramming for crop improvement. Journal of Experimental Botany 70:2965−78

doi: 10.1093/jxb/ery464
[6]

Rodríguez-Sanz H, Solís MT, López MF, Gómez-Cadenas A, Risueño MC, et al. 2015. Auxin biosynthesis, accumulation, action and transport are involved in stress-induced microspore embryogenesis initiation and progression in Brassica napus. Plant and Cell Physiology 56:1401−17

doi: 10.1093/pcp/pcv058
[7]

Luo P, Jiang A, Zhou Y, Yang M, Zhou X, et al. 2022. Phospholipase C is a novel regulator at the early stages of microspore embryogenesis in Nicotiana tabacum. Plant Signaling & Behavior 17:2094618

doi: 10.1080/15592324.2022.2094618
[8]

Solís MT, El-Tantawy AA, Cano V, Risueño MC, Testillano PS. 2015. 5-azacytidine promotes microspore embryogenesis initiation by decreasing global DNA methylation, but prevents subsequent embryo development in rapeseed and barley. Frontiers in Plant Science 6:472

doi: 10.3389/fpls.2015.00472
[9]

Berenguer E, Bárány I, Solís MT, Pérez-Pérez Y, Risueño MC, et al. 2017. Inhibition of histone H3K9 methylation by BIX-01294 promotes stress-induced microspore totipotency and enhances embryogenesis initiation. Frontiers in Plant Science 8:1161

doi: 10.3389/fpls.2017.01161
[10]

Bárány I, Berenguer E, Solís MT, Pérez-Pérez Y, Santamaría ME, et al. 2018. Autophagy is activated and involved in cell death with participation of cathepsins during stress-induced microspore embryogenesis in barley. Journal of Experimental Botany 69:1387−402

doi: 10.1093/jxb/erx455
[11]

Soriano M, Li H, Boutilier K. 2013. Microspore embryogenesis: establishment of embryo identity and pattern in culture. Plant Reproduction 26:181−96

doi: 10.1007/s00497-013-0226-7
[12]

Maraschin SF, de Priester W, Spaink HP, Wang M. 2005. Androgenic switch: an example of plant embryogenesis from the male gametophyte perspective. Journal of Experimental Botany 56:1711−26

doi: 10.1093/jxb/eri190
[13]

Maraschin SF, Gaussand G, Pulido A, Olmedilla A, Lamers GEM, et al. 2005. Programmed cell death during the transition from multicellular structures to globular embryos in barley androgenesis. Planta 221:459−70

doi: 10.1007/s00425-004-1460-x
[14]

Daghma DS, Kumlehn J, Hensel G, Rutten T, Melzer M. 2012. Time-lapse imaging of the initiation of pollen embryogenesis in barley (Hordeum vulgare L. ). Journal of Experimental Botany 63:6017−21

doi: 10.1093/jxb/ers254
[15]

Maraschin SF, Vennik M, Lamers GE, Spaink HP, Wang M. 2005. Time-lapse tracking of barley androgenesis reveals position-determined cell death within pro-embryos. Planta 220:531−40

doi: 10.1007/s00425-004-1371-x
[16]

Lian N, Wang X, Jing Y, Lin J. 2021. Regulation of cytoskeleton-associated protein activities: Linking cellular signals to plant cytoskeletal function. Journal of Integrative Plant Biology 63:241−50

doi: 10.1111/jipb.13046
[17]

Dubas E, Custers J, Kieft H, Wędzony M, van Lammeren AAM. 2014. Characterization of polarity development through 2-and 3-D imaging during the initial phase of microspore embryogenesis in Brassica napus L. Protoplasma 251:103−13

doi: 10.1007/s00709-013-0530-y
[18]

Hause B, Hause G, Pechan P, Van Lammeren AAM. 1993. Cytoskeletal changes and induction of embryogenesis in microspore and pollen cultures of Brassica napus L. Cell Biology International 17:153−68

doi: 10.1006/cbir.1993.1052
[19]

Islam SM, Tuteja N. 2012. Enhancement of androgenesis by abiotic stress and other pretreatments in major crop species. Plant Science 182:134−44

doi: 10.1016/j.plantsci.2011.10.001
[20]

Gervais C, Newcomb W, Simmonds DH. 2000. Rearrangement of the actin filament and microtubule cytoskeleton during induction of microspore embryogenesis in Brassica napus L. cv. Topas. Protoplasma 213:194−202

doi: 10.1007/BF01282157
[21]

Soriano M, Cistué L, Castillo AM. 2008. Enhanced induction of microspore embryogenesis after n-butanol treatment in wheat (Triticum aestivum L. ) anther culture. Plant Cell Reports 27:805−11

doi: 10.1007/s00299-007-0500-y
[22]

Dubas E, Castillo AM, Zur I, Żur I, Krzewska M, Vallés MP. 2021. Microtubule organization changes severely after mannitol and n-butanol treatments inducing microspore embryogenesis in bread wheat. BMC Plant Biology 21:586

doi: 10.1186/s12870-021-03345-3
[23]

Cosgrove DJ. 2024. Structure and growth of plant cell walls. Nature Reviews Molecular Cell Biology 25:340−58

doi: 10.1038/s41580-023-00691-y
[24]

Cosgrove DJ. 2005. Growth of the plant cell wall. Nature Reviews Molecular Cell Biology 6:850−61

doi: 10.1038/nrm1746
[25]

Camacho-Fernández C, Seguí-Simarro JM, Mir R, Boutilier K, Corral-Martínez P. 2021. Cell wall composition and structure define the developmental fate of embryogenic microspores in Brassica napus. Frontiers in Plant Science 12:737139

doi: 10.3389/fpls.2021.737139
[26]

Pelloux J, Rustérucci C, Mellerowicz EJ. 2007. New insights into pectin methylesterase structure and function. Trends in Plant Science 12:267−77

doi: 10.1016/j.tplants.2007.04.001
[27]

Levesque-Tremblay G, Müller K, Mansfield SD, Haughn GW. 2015. HIGHLY METHYL ESTERIFIED SEEDS is a pectin methyl esterase involved in embryo development. Plant Physiology 167:725−37

doi: 10.1104/pp.114.255604
[28]

Tang XC, He YQ, Wang Y, Sun MX. 2006. The role of arabinogalactan proteins binding to Yariv reagents in the initiation, cell developmental fate, and maintenance of microspore embryogenesis in Brassica napus L. cv. Topas. Journal of Experimental Botany 57:2639−50

doi: 10.1093/jxb/erl027
[29]

Seifert GJ, Roberts K. 2007. The biology of arabinogalactan proteins. Annual Review of Plant Biology 58:137−61

doi: 10.1146/annurev.arplant.58.032806.103801
[30]

Tang X, Liu Y, He Y, Ma L, Sun MX. 2013. Exine dehiscing induces rape microspore polarity, which results in different daughter cell fate and fixes the apical–basal axis of the embryo. Journal of Experimental Botany 64:215−28

doi: 10.1093/jxb/ers327
[31]

Caffall KH, Mohnen D. 2009. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydrate Research 344:1879−900

doi: 10.1016/j.carres.2009.05.021
[32]

Wang C, Zhang P, He Y, Huang F, Wang X, et al. 2023. Exogenous spraying of IAA improved the efficiency of microspore embryogenesis in Wucai (Brassica campestris L.) by affecting the balance of endogenous hormones, energy metabolism, and cell wall degradation. BMC Genomics 24:380

doi: 10.1186/s12864-023-09483-2
[33]

Letarte J, Simion E, Miner M, Kasha KJ. 2006. Arabinogalactans and arabinogalactan-proteins induce embryogenesis in wheat (Triticum aestivum L.) microspore culture. Plant Cell Reports 24:691−98

doi: 10.1007/s00299-005-0013-5
[34]

Camacho-Fernández C, Corral-Martínez P, Calabuig-Serna A, Arjona-Mudarra P, Sancho-Oviedo D, et al. 2024. The different response of Brassica napus genotypes to microspore embryogenesis induced by heat shock and trichostatin A is not determined by changes in cell wall structure and composition but by different stress tolerance. Physiologia Plantarum 176:e14405

doi: 10.1111/ppl.14405
[35]

Li Z, Zhang D, Shi P, Htwe YM, Yu Q, et al. 2023. Cell wall lignification may be necessary for somatic embryogenesis of areca palm (Areca catechu). Scientia Horticulturae 307:111538

doi: 10.1016/j.scienta.2022.111538
[36]

Zhao P, Zhou XM, Zhang LY, Wang W, Ma LG, et al. 2013. A bipartite molecular module controls cell death activation in the Basal cell lineage of plant embryos. PLoS Biology 11:e1001655

doi: 10.1371/journal.pbio.1001655
[37]

Shi C, Luo P, Du YT, Chen H, Huang X, et al. 2019. Maternal control of suspensor programmed cell death via gibberellin signaling. Nature Communications 10:3484

doi: 10.1038/s41467-019-11476-3
[38]

Kacprzyk J, Burke R, Armengot L, Coppola M, Tattrie SB, et al. 2024. Roadmap for the next decade of plant programmed cell death research. New Phytologist 242:1865−75

doi: 10.1111/nph.19709
[39]

Touraev A, Vicente O, Heberle-Bors E. 1997. Initiation of microspore embryogenesis by stress. Trends in Plant Science 2:297−302

doi: 10.1016/S1360-1385(97)89951-7
[40]

Ali MF, Muday GK. 2024. Reactive oxygen species are signaling molecules that modulate plant reproduction. Plant, Cell & Environment 47:1592−605

doi: 10.1111/pce.14837
[41]

Pérez-Pérez ME, Lemaire SD, Crespo JL. 2012. Reactive oxygen species and autophagy in plants and algae. Plant Physiology 160:156−64

doi: 10.1104/pp.112.199992
[42]

Pérez-Pérez Y, Bárány I, Berenguer E, Carneros E, Risueño MC, et al. 2019. Modulation of autophagy and protease activities by small bioactive compounds to reduce cell death and improve stress-induced microspore embryogenesis initiation in rapeseed and barley. Plant Signaling & Behavior 14:1559577

doi: 10.1080/15592324.2018.1559577
[43]

Żur I, Kopeć P, Surówka E, Dubas E, Krzewska M, et al. 2021. Impact of ascorbate-glutathione cycle components on the effectiveness of embryogenesis induction in isolated microspore cultures of barley and triticale. Antioxidants 10:1254

doi: 10.3390/antiox10081254
[44]

Dubas E, Krzewska M, Surówka E, Kopeć P, Springer A, et al. 2024. New prospects for improving microspore embryogenesis induction in highly recalcitrant winter wheat lines. Plants 13:363

doi: 10.3390/plants13030363
[45]

Zhao P, Zhou XM, Zhao LL, Cheung AY, Sun MX. 2020. Autophagy-mediated compartmental cytoplasmic deletion is essential for tobacco pollen germination and male fertility. Autophagy 16:2180−92

doi: 10.1080/15548627.2020.1719722
[46]

Zhao LL, Chen R, Bai Z, Liu J, Zhang Y, et al. 2024. Autophagy-mediated degradation of integumentary tapetum is critical for embryo pattern formation. Nature Communications 15:2676

doi: 10.1038/s41467-024-46902-8
[47]

Green DR, Levine B. 2014. To be or not to be? How selective autophagy and cell death govern cell fate. Cell 157:65−75

doi: 10.1016/j.cell.2014.02.049
[48]

Luo P, Zhao Z, Yang F, Zhang L, Li S, et al. 2025. Stress-induced autophagy is essential for microspore cell fate transition to the initial cell of androgenesis. Plant, Cell & Environment 48:421−34

doi: 10.1111/pce.15158
[49]

Kohli A, Sreenivasulu N, Lakshmanan P, Kumar PP. 2013. The phytohormone crosstalk paradigm takes center stage in understanding how plants respond to abiotic stresses. Plant Cell Reports 32:945−57

doi: 10.1007/s00299-013-1461-y
[50]

Jones B, Ljung K. 2011. Auxin and cytokinin regulate each other’s levels via a metabolic feedback loop. Plant Signaling & Behavior 6:901−4

doi: 10.4161/psb.6.6.15323
[51]

Yu Z, Zhang F, Friml J, Ding Z. 2022. Auxin signaling: Research advances over the past 30 years. Journal of Integrative Plant Biology 64:371−92

doi: 10.1111/jipb.13225
[52]

Song X, Xiong Y, Kong X, Huang G. 2023. Roles of auxin response factors in rice development and stress responses. Plant, Cell & Environment 46:1075−86

doi: 10.1111/pce.14494
[53]

Guha S, Maheshwari SC. 1964. In vitro production of embryos from anthers of Datura. Nature 204:497−97

doi: 10.1038/204497a0
[54]

Raghavan V. 2004. Role of 2, 4-dichlorophenoxyacetic acid (2,4-D) in somatic embryogenesis on cultured zygotic embryos of Arabidopsis: cell expansion, cell cycling, and morphogenesis during continuous exposure of embryos to 2,4-D. American Journal of Botany 91:1743−56

doi: 10.3732/ajb.91.11.1743
[55]

Lanková M, Smith RS, Pesek B, Kubes M, Zazímalová E, et al. 2010. Auxin influx inhibitors 1-NOA, 2-NOA, and CHPAA interfere with membrane dynamics in tobacco cells. Journal of Experimental Botany 61:3589−98

doi: 10.1093/jxb/erq172
[56]

Dollmantel HJ, Reinert J. 1980. Auxin levels, antiauxin(s) and androgenic plantlet formation in isolated pollen cultures of Nicotiana tabacum. Protoplasma 103:155−62

doi: 10.1007/BF01276672
[57]

Cistué L, Ramos A, Castillo AM. 1998. Influence of anther pretreatment and culture medium composition on the production of barley doubled haploids from model and low responding cultivars. Plant Cell, Tissue and Organ Culture 55:159−66

doi: 10.1023/A:1006130028396
[58]

Zhang Y, Wang A, Liu Y, Wang Y, Feng H. 2011. Effects of the antiauxin PCIB on microspore embryogenesis and plant regeneration in Brassica rapa. Scientia Horticulturae 130:32−37

doi: 10.1016/j.scienta.2011.06.047
[59]

Rodríguez-Sanz H, Manzanera J-A, Solís M-T, Gómez-Garay A, Pintos B, et al. 2014. Early markers are present in both embryogenesis pathways from microspores and immature zygotic embryos in cork oak, Quercus suber L. BMC Plant Biology 14:224

doi: 10.1186/s12870-014-0224-4
[60]

Prem D, Gupta K, Agnihotri A. 2005. Doubled haploids: a powerful biotechnological tool for genetic enhancement in oilseed brassicas. In Plant Biotechnology and Molecular Markers, eds. Srivastava P, Narula A, Srivastava S. Dordrecht: Springer. pp. 18−30. doi: 10.1007/1-4020-3213-7_2

[61]

Rodríguez-Sanz H, Moreno-Romero J, Solís MT, Köhler C, Risueño MC, et al. 2014. Changes in histone methylation and acetylation during microspore reprogramming to embryogenesis occur concomitantly with BnHKMT and BnHAT expression and are associated with cell totipotency, proliferation, and differentiation in Brassica napus. Cytogenetic and Genome Research 143:209−18

doi: 10.1159/000365261
[62]

Dubas E, Moravčíková J, Libantová J, Matušíková I, Benková E, et al. 2014. The influence of heat stress on auxin distribution in transgenic B. napus microspores and microspore-derived embryos. Protoplasma 251:1077−87

doi: 10.1007/s00709-014-0616-1
[63]

Li SM, Zheng HX, Zhang XS, Sui N. 2021. Cytokinins as central regulators during plant growth and stress response. Plant Cell Reports 40:271−82

doi: 10.1007/s00299-020-02612-1
[64]

Żur I, Dubas E, Golemiec E, Szechyńska-Hebda M, Gołębiowska G, et al. 2009. Stress-related variation in antioxidative enzymes activity and cell metabolism efficiency associated with embryogenesis induction in isolated microspore culture of triticale (× Triticosecale Wittm.). Plant Cell Reports 28:1279−87

doi: 10.1007/s00299-009-0730-2
[65]

Juzoń-Sikora K, Nowicka A, Plačková L, Doležal K, Żur I. 2023. Hormonal homeostasis associated with effective induction of triticale microspore embryogenesis. Plant Cell, Tissue and Organ Culture 152:583−604

doi: 10.1007/s11240-022-02433-y
[66]

Chen K, Li GJ, Bressan RA, Song CP, Zhu JK, et al. 2020. Abscisic acid dynamics, signaling, and functions in plants. Journal of Integrative Plant Biology 62:25−54

doi: 10.1111/jipb.12899
[67]

Hoekstra S, van Bergen S, van Brouwershaven IR, Schilperoort RA, Wang M. 1997. Androgenesis in Hordeum vulgare L.: Effects of mannitol, calcium and abscisic acid on anther pretreatment. Plant Science 126:211−18

doi: 10.1016/S0168-9452(97)00096-4
[68]

Reynolds TL, Crawford RL. 1996. Changes in abundance of an abscisic acid-responsive, early cysteine-labeled metallothionein transcript during pollen embryogenesis in bread wheat (Triticum aestivum). Plant Molecular Biology 32:823−29

doi: 10.1007/BF00020480
[69]

Imamura J, Harada H. 1980. Effects of abscisic acid and water stress on the embryo and plantlet formation in anther culture of Nicotiana tabacum cv. Samsun. Zeitschrift für Pflanzenphysiologie 100:285−89

doi: 10.1016/s0044-328x(80)80232-7
[70]

Żur I, Dubas E, Krzewska M, Janowiak F, Hura K, et al. 2014. Antioxidant activity and ROS tolerance in triticale (× Triticosecale Wittm.) anthers affect the efficiency of microspore embryogenesis. Plant Cell, Tissue and Organ Culture 119:79−94

doi: 10.1007/s11240-014-0515-3
[71]

Żur I, Dubas E, Krzewska M, Waligórski P, Dziurka M, et al. 2015. Hormonal requirements for effective induction of microspore embryogenesis in triticale (× Triticosecale Wittm.) anther cultures. Plant Cell Reports 34:47−62

doi: 10.1007/s00299-014-1686-4
[72]

Ahmadi B, Shariatpanahi ME, Teixeira da Silva JA. 2014. Efficient induction of microspore embryogenesis using abscisic acid, jasmonic acid and salicylic acid in Brassica napus L. Plant Cell, Tissue and Organ Culture 116:343−51

doi: 10.1007/s11240-013-0408-x
[73]

Berenguer E, Carneros E, Pérez-Pérez Y, Gil C, Martínez A, Testillano PS. 2021. Small molecule inhibitors of mammalian GSK-3β promote in vitro plant cell reprogramming and somatic embryogenesis in crop and forest species. Journal of Experimental Botany 72:7808−25

doi: 10.1093/jxb/erab365
[74]

Youn JH, Kim TW. 2015. Functional insights of plant GSK3-like kinases: multi-taskers in diverse cellular signal transduction pathways. Molecular Plant 8:552−65

doi: 10.1016/j.molp.2014.12.006
[75]

Huang X, Zhao P, Peng X, Sun MX. 2023. Seed development in Arabidopsis: what we have learnt in the past 30 years. Seed Biology 2:6

doi: 10.48130/SeedBio-2023-0006
[76]

Xiong M, Feng GN, Gao Q, Zhang CQ, Li QF, et al. 2022. Brassinosteroid regulation in rice seed biology. Seed Biology 1:2

doi: 10.48130/seedbio-2022-0002
[77]

Wong C, Alabadí D, Blázquez MA. 2023. Spatial regulation of plant hormone action. Journal of Experimental Botany 74:6089−103

doi: 10.1093/jxb/erad244
[78]

Haddadi P, Moieni A, Karimzadeh G, Abdollahi MR. 2012. Effects of gibberellin, abscisic acid and embryo desiccation on normal plantlet regeneration, secondary embryogenesis and callogenesis in microspore culture of Brassica napus L. cv. PF704. International Journal of Plant Production 2:153−62

doi: 10.22069/IJPP.2012.607
[79]

Ahmadi B, Alizadeh K, Teixeira da Silva JA. 2012. Enhanced regeneration of haploid plantlets from microspores of Brassica napus L. using bleomycin, PCIB, and phytohormones. Plant Cell, Tissue and Organ Culture 109:525−33

doi: 10.1007/s11240-012-0119-8
[80]

Hays DB, Yeung EC, Pharis RP. 2002. The role of gibberellins in embryo axis development. Journal of Experimental Botany 53:1747−51

doi: 10.1093/jxb/erf017
[81]

Huang H, Chen Y, Wang S, Qi T, Song S. 2023. Jasmonate action and crosstalk in flower development and fertility. Journal of Experimental Botany 74:1186−97

doi: 10.1093/jxb/erac251
[82]

Jacquard C, Mazeyrat-Gourbeyre F, Devaux P, Boutilier K, Baillieul F, et al. 2009. Microspore embryogenesis in barley: anther pre-treatment stimulates plant defence gene expression. Planta 229:393−402

doi: 10.1007/s00425-008-0838-6
[83]

Zeng H, Bai Y, Wei Y, Reiter RJ, Shi H. 2022. Phytomelatonin as a central molecule in plant disease resistance. Journal of Experimental Botany 73:5874−85

doi: 10.1093/jxb/erac111
[84]

Ma B, Ma T, Xian W, Hu B, Chu C. 2023. Interplay between ethylene and nitrogen nutrition: How ethylene orchestrates nitrogen responses in plants. Journal of Integrative Plant Biology 65:399−407

doi: 10.1111/jipb.13355
[85]

Binder BM. 2020. Ethylene signaling in plants. Journal of Biological Chemistry 295:7710−25

doi: 10.1074/jbc.REV120.010854
[86]

Cho UH, Kasha KJ. 1989. Ethylene production and embryogenesis from anther cultures of barley (Hordeum vulgare). Plant Cell Reports 8:415−17

doi: 10.1007/BF00270082
[87]

Prem D, Gupta K, Agnihotri A. 2005. Effect of various exogenous and endogenous factors on microspore embryogenesis in Indian mustard (Brassica juncea (L.) Czern and Coss). In Vitro Cellular & Developmental Biology - Plant 41:266−73

doi: 10.1079/IVP2005636
[88]

Prem D, Gupta K, Sarkar G, Agnihotri A. 2008. Activated charcoal induced high frequency microspore embryogenesis and efficient doubled haploid production in Brassica juncea. Plant Cell, Tissue and Organ Culture 93:269−82

doi: 10.1007/s11240-008-9373-1
[89]

Leroux B, Carmoy N, Giraudet D, Potin P, Larher F, et al. 2009. Inhibition of ethylene biosynthesis enhances embryogenesis of cultured microspores of Brassica napus. Plant Biotechnology Reports 3:347−53

doi: 10.1007/s11816-009-0109-4
[90]

Evans JM, Batty NP. 1994. Ethylene precursors and antagonists increase embryogenesis of Hordeum vulgare L. anther culture. Plant Cell Reports 13:676−78

doi: 10.1007/BF00231622
[91]

Kiviharju E, Moisander S, Laurila J. 2005. Improved green plant regeneration rates from oat anther culture and the agronomic performance of some DH lines. Plant Cell, Tissue and Organ Culture 81:1−9

doi: 10.1007/s11240-004-1560-0
[92]

Begcy K, Dresselhaus T. 2018. Epigenetic responses to abiotic stresses during reproductive development in cereals. Plant Reproduction 31:343−55

doi: 10.1007/s00497-018-0343-4
[93]

Lee K, Seo PJ. 2018. Dynamic epigenetic changes during plant regeneration. Trends in Plant Science 23:235−47

doi: 10.1016/j.tplants.2017.11.009
[94]

Ono A, Kinoshita T. 2021. Epigenetics and plant reproduction: Multiple steps for responsibly handling succession. Current Opinion in Plant Biology 61:102032

doi: 10.1016/j.pbi.2021.102032
[95]

Ahmad A, Zhang Y, Cao XF. 2010. Decoding the epigenetic language of plant development. Molecular Plant 3:719−28

doi: 10.1093/mp/ssq026
[96]

He S, Feng X. 2022. DNA methylation dynamics during germline development. Journal of Integrative Plant Biology 64:2240−51

doi: 10.1111/jipb.13422
[97]

El-Tantawy AA, Solís MT, Risueño MC, Testillano PS. 2014. Changes in DNA methylation levels and nuclear distribution patterns after microspore reprogramming to embryogenesis in barley. Cytogenetic and Genome Research 143:200−8

doi: 10.1159/000365232
[98]

Li J, Huang Q, Sun M, Zhang T, Li H, et al. 2016. Global DNA methylation variations after short-term heat shock treatment in cultured microspores of Brassica napus cv. Topas. Scientific Reports 6:38401

doi: 10.1038/srep38401
[99]

Sun L, Cao Y, Li Z, Liu Y, Yin X, et al. 2023. Conserved H3K27me3-associated chromatin looping mediates physical interactions of gene clusters in plants. Journal of Integrative Plant Biology 65:1966−82

doi: 10.1111/jipb.13502
[100]

Nowicka A, Juzoń K, Krzewska M, Dziurka M, Dubas E, et al. 2019. Chemically-induced DNA de-methylation alters the effectiveness of microspore embryogenesis in triticale. Plant Science 287:110189

doi: 10.1016/j.plantsci.2019.110189
[101]

Solís MT, Rodríguez-Serrano M, Meijón M, Cañal MJ, Cifuentes A, et al. 2012. DNA methylation dynamics and MET1a-like gene expression changes during stress-induced pollen reprogramming to embryogenesis. Journal of Experimental Botany 63:6431−44

doi: 10.1093/jxb/ers298
[102]

Krzewska M, Dubas E, Gołębiowska G, Nowicka A, Janas A, et al. 2021. Comparative proteomic analysis provides new insights into regulation of microspore embryogenesis induction in winter triticale (× Triticosecale Wittm.) after 5-azacytidine treatment. Scientific Reports 11:22215

doi: 10.1038/s41598-021-01671-y
[103]

Kong C, Su H, Deng S, Ji J, Wang Y, et al. 2022. Global DNA methylation and mRNA-miRNA variations activated by heat shock boost early microspore embryogenesis in cabbage (Brassica oleracea). International Journal of Molecular Sciences 23:5147

doi: 10.3390/ijms23095147
[104]

Pandey R, Müller A, Napoli CA, Selinger DA, Pikaard CS, et al. 2002. Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Research 30:5036−55

doi: 10.1093/nar/gkf660
[105]

Liu C, Lu F, Cui X, Cao X. 2010. Histone methylation in higher plants. Annual Review of Plant Biology 61:395−420

doi: 10.1146/annurev.arplant.043008.091939
[106]

Valero-Rubira I, Castillo AM, Burrell MÁ, Vallés MP. 2023. Microspore embryogenesis induction by mannitol and TSA results in a complex regulation of epigenetic dynamics and gene expression in bread wheat. Frontiers in Plant Science 13:1058421

doi: 10.3389/fpls.2022.1058421
[107]

Valero-Rubira I, Vallés MP, Echávarri B, Fustero P, Costar MA, et al. 2024. New epigenetic modifier inhibitors enhance microspore embryogenesis in bread wheat. Plants 13:772

doi: 10.3390/plants13060772
[108]

Liu C, Song G, Fang B, Liu Z, Zou J, et al. 2023. Suberoylanilide hydroxamic acid induced microspore embryogenesis and promoted plantlet regeneration in ornamental kale (Brassica oleracea var. acephala). Protoplasma 260:117−29

doi: 10.1007/s00709-022-01764-z
[109]

Touraev A, Indrianto A, Wratschko I, Vicente O, Heberle-Bors E. 1996. Efficient microspore embryogenesis in wheat (Triticum aestivum L.) induced by starvation at high temperature. Sexual Plant Reproduction 9:209−15

doi: 10.1007/BF02173100
[110]

Olsen FL. 1992. Isolation and cultivation of embryogenic microspores from barley (Hordeum vulgare L.). Hereditas 115:255−66

doi: 10.1111/j.1601-5223.1992.tb00568.x
[111]

Barnabas B, Fransz PF, Schel JHN. 1987. Ultrastructural studies on pollen embryogenesis in maize (Zea mays L.). Plant Cell Reports 6:212−15

doi: 10.1007/BF00268482
[112]

Gu HH, Hagberg P, Zhou WJ. 2004. Cold pretreatment enhances microspore embryogenesis in oilseed rape (Brassica napus L.). Plant Growth Regulation 42:137−43

doi: 10.1023/B:GROW.0000017488.29181.fa
[113]

Perez-Piñar T, Hartmann A, Bössow S, Gnad H, Mock HP. 2024. Metabolic changes during wheat microspore embryogenesis induction using the highly responsive cultivar Svilena. Journal of Plant Physiology 294:154193

doi: 10.1016/j.jplph.2024.154193
[114]

Gajecka M, Marzec M, Chmielewska B, Jelonek J, Zbieszczyk J, et al. 2020. Plastid differentiation during microgametogenesis determines green plant regeneration in barley microspore culture. Plant Science 291:110321

doi: 10.1016/j.plantsci.2019.110321
[115]

Esteves P, Belzile FJ. 2019. Isolated microspore culture in barley. Methods in Molecular Biology 1900:53−71

doi: 10.1007/978-1-4939-8944-7_5
[116]

Vergne P, Gaillard A. 2021. Isolation of staged and viable maize microspores for DH production. Methods in Molecular Biology 2287:281−93

doi: 10.1007/978-1-0716-1315-3_15
[117]

Bhowmik P, Dirpaul J, Polowick P, Ferrie AMR. 2011. A high throughput Brassica napus microspore culture system: influence of percoll gradient separation and bud selection on embryogenesis. Plant Cell, Tissue and Organ Culture 106:359−62

doi: 10.1007/s11240-010-9913-3
[118]

Winarto B, Teixeira da Silva JA. 2011. Microspore culture protocol for Indonesian Brassica oleracea. Plant Cell, Tissue and Organ Culture 107:305−15

doi: 10.1007/s11240-011-9981-z
[119]

Niu L, Shi F, Feng H, Zhang Y. 2019. Efficient doubled haploid production in microspore culture of Zengcheng flowering Chinese cabbage (Brassica campestris L. ssp. chinensis [L.] Makino var. utilis Tsen et Lee). Scientia Horticulturae 245:57−64

doi: 10.1016/j.scienta.2018.09.076
[120]

Jia J, Zhang Y, Cui L, Feng H. 2019. Effect of thidiazuron on microspore embryogenesis and plantlet regeneration in Chinese flowering cabbage (Brassica rapa. var. parachinenis). Plant Breeding 138:916−24

doi: 10.1111/pbr.12738