[1]

Olivera-Castro Y, Castañeda-Pimienta L, Toral-Pérez OC. 2017. Morphobotanical characterization of Cenchrus purpureus (Schumach.) Morrone plants from a national collection. Pastos y Forrajes 40:184−87

[2]

Dos Reis GB, Mesquita AT, Torres GA, Andrade-Vieira LF, Pereira VA, et al. 2014. Genomic homeology between Pennisetum purpureum and Pennisetum glaucum (Poaceae). Comparative Cytogenetics 8:199−209

doi: 10.3897/compcytogen.v8i3.7732
[3]

Ribiero REP, Mello ACL, Cunha MV, Santos MVF, Costa SBM, et al. 2023. Water use efficiency and yield responses of Cenchrus purpureus genotypes under irrigation. The Journal of Agriculture Science 161:572−80

doi: 10.1017/S0021859623000461
[4]

Farrell G, Simons SA, Hillocks RJ. 2002. Pests, diseases and weeds of Napier grass, Pennisetum purpureum: a review. International Journal of Pest Management 48:39−48

doi: 10.1080/09670870110065578
[5]

Habte E, Teshome A, Muktar MS, Assefa Y, Negawo AT, et al. 2022. Productivity and feed quality performance of Napier grass (Cenchrus purpureus) genotypes growing under different soil moisture levels. Plants 11(19):2549

doi: 10.3390/plants11192549
[6]

Daniel JLP, Bernardes TF, Jobim CC, Schmidt P, Nussio LG. 2019. Production and utilization of silages in tropical areas with focus on Brazil. Grass and Forage Science 74:188−200

doi: 10.1111/gfs.12417
[7]

Islam MR, Garcia SC, Sarker NR, Islam MA, Clark CEF. 2023. Napier grass (Pennisetum purpureum Schum) management strategies for dairy and meat production in the tropics and subtropics: yield and nutritive value. Frontiers in Plant Science 14:1269976

doi: 10.3389/fpls.2023.1269976
[8]

Fayos-Febrer J, Juan-Vicedo J, Rodríguez-Mengod A, Mazón J, Gardón JC. 2023. Impact of harvest time on the dry matter content, and nutritional parameters related to forage quality of maralfalfa (Cenchrus purpureus (Schumach.) Morrone, Poaceae) under Mediterranean climate. Plants 12(23):4045

doi: 10.3390/plants12234045
[9]

Tulu A, Diribsa M, Temesgen W. 2021. Dry matter yields and quality parameters of ten Napier grass (Cencherus purpureus) genotypes at three locations in western Oromia, Ethiopia. Tropical Grassland 9:43−51

doi: 10.17138/tgft(9)43-51
[10]

Sánchez-Guerra NA, Gonzalez-Ronquillo M, Anderson RC, Hume ME, Ruiz-Albarrán M, et al. 2024. Improvements in fermentation and nutritive quality of elephant grass [Cenchrus purpureus (Schumach.) Morrone] silages: a review. Tropical Animal Health Production 56:171

doi: 10.1007/s11250-024-04027-6
[11]

Crespo López G, Cabrera Carcedo EA, Díaz García VJ. 2018. Study of the fertility of a carbonate red brown soil in a biomass bank with Cenchrus purpureus cv. CUBA CT-115 of ten exploitation years. Cuban Journal of Agricultural Science 52:67−74

[12]

Caballero-Gómez A, Martínez-Zabiaur RO, Hernández-Chavez MB, Navarro-Boulandier M. 2016. Characterization of the yield and quality of five accessions of Cenchrus purpureus (Shumach.) Morrone. Pastos y Forrajes 39(2):87−93

[13]

Villanueva-Avalos JF, Vázquez-González A, Cuero-Carrillo AR. 2022. Agronomic attributes and forges production in ecotypes of Cenchrus purpureus under subhumid tropical conditions. Revista Mexicana de Ciencias Agrícolas 27:1−9

[14]

Ventura Ríos J, Honorato Salazar JA, Apolinar Hidalgo F, Barrera Martinez I, Aburto Anell J, et al. 2022. Agronomic characterization of Taiwan grass [Cenchrus purpureus (Shumach.) Morrone] and evaluation of its potential to produce bioethanol in the warm subhumid climate of Mexico. Tropical Grassland 10(1):22−31

doi: 10.17138/tgft(10)22-31
[15]

Ray JV, Almaguer RF, Ledea JL, Benítez DG, Arias RC, et al. 2018. Evaluation of varieties of Cenchrus purpureus tolerant to drought under pre-mountain conditions. Cuban Journal of Agricultural Science 52(1):75−86

[16]

Giridhar K, Samireddypalle A. 2015. Impact of climate change on forage availability for livestock. In Climate Change Impact on Livestock: Adaptation and Mitigation, eds Sejian V, Gaughan J, Baumgard L, Prasad C. New Delhi: Springer. pp. 97–112. doi: 10.1007/978-81-322-2265-1_7

[17]

Rojas-Downing MM, Pouyan NA, Harrigan T, Woznicki SA. 2017. Climate change and livestock: impacts, adaptation, and mitigation. Climate Risk Management 16:145−63

doi: 10.1016/j.crm.2017.02.001
[18]

Comisión Nacional del Agua (CONAGUA). Monitor de sequias en México. (Accessed on 2022, 19 de junio). https://smn.conagua.gob.mx/es/climatologia/monitor-de-sequia/monitor-de-sequia-en-mexico

[19]

Sistema de Información Estadística y Geográfica del estado de Veracruz de Ignacio de la Llave (SIEGVER). 2020. Cuadernillos municipales 2020. Veracruz: Gobierno del Estado. http://ceieg.veracruz.gob.mx/wp-content/uploads/sites/21/2020/12/Tantoyuca_2020.pdf

[20]

Rojas García AR, Hernández Garay A, Quero Carrillo AR, De Dios Guerrero Rodríguez J, Ayala W, et al. 2016. Persistence of Dactylis glomerata L. alone and associated with Lolium perenne L. and Trifolium repens L. Revista Mexicana de Ciencias Agrícolas 7:885−95

[21]

Weiss WP, Hall MB. 2020. Laboratory methods for evaluating forage quality. In Forages: The Science of Grassland Agriculture, eds. Moore KJ, Collins M, Nelson CJ, Redfearn DD. Vol. 2. Chenai, India: John Wiley & Sons Ltd. pp. 659−72. doi: 10.1002/9781119436669.ch36

[22]

Habte E, Muktar MS, Abdena A, Hanson J, Sartie AM, et al. 2020. Forage performance and detection of marker trait associations with potential for Napier grass (Cenchrus purpureus) improvement. Agronomy 10:542

doi: 10.3390/agronomy10040542
[23]

Setiawan BI. 2020. A simple method to determine patterns of wet and dry seasons. IOP Conference Series: Earth and Environmental Science 542:012055

doi: 10.1088/1755-1315/542/1/012055
[24]

Rueda JA, Ortega-Jiménez E, Hernández-Garay A, Enríquez-Quiroz JF, Guerrero-Rodríguez JD, et al. 2016. Growth, yield, fiber content and lodging resistance in eight varieties of Cenchrus purpureus (Schumach.) Morrone intended as energy crop. Biomass and Bioenergy 88:59−65

doi: 10.1016/j.biombioe.2016.03.007
[25]

Uvidia-Cabadina HA, Ramírez-De la Rivera JL, de Decker M, Torres B, Samaniego-Guzmán EO, et al. 2018. Influence of age and climate in the production of Cenchrus purpureus in the Ecuadorian Amazon Region. Tropical and subtropical Agroecosistems 21:95−100

doi: 10.56369/tsaes.2597
[26]

Zewdu T. 2008. Effect of plant density on morphological characteristics, yield and chemical composition of Napier grass (Pennisetum purpureum (L.) Schumach). East African Journal of Science 2(1):55−61

doi: 10.4314/eajsci.v2i1.40365
[27]

Maldonado-Méndez JJ, Gálvez-Marroquín LA, Guerra-Medina CE, Basurto-Gutiérrez R, Escobar-España JC, et al. 2024. Yield and nutritional value of Cenchrus purpureus VC Maralfalfa grass. Agro Productividad 17(7):35−42

doi: 10.32854/agrop.v17i7.2670
[28]

Ruiz TE, Febles G, Vasallo J, Díaz H. 2017. Evaluation of Cenchrus purpureus varieties during its establishment in western Cuba. Cuban Journal of Agriculture Science 51(1):93−100

[29]

Arias RC, Ledea JL, Benitez DG, Ray JV, Ramímez RJL. 2018. Performance of new varieties of Cenchrus purpureus, tolerant to drought, during dry period. Cuban Journal of Agriculture Science 52:203−14

[30]

Araujo LC, Santos PM, Rodríguez R, Pezzopane JRM, Oliveira PPA, et al. 2013. Simulating Guinea grass production: empirical and mechanistic approaches. Agronomy Journal 105:61−69

doi: 10.2134/agronj2012.0245
[31]

Andrade AS, Santos PM, Pezzopane JRM, de Araujo LC, Pedreira BC, et al. 2016. Simulating tropical forage growth and biomass accumulation: an overview of model development and application. Grass and Forage Science 71:54−65

doi: 10.1111/gfs.12177