[1] |
Taylor R, Al-Mrabeh A, Sattar N. 2019. Understanding the mechanisms of reversal of type 2 diabetes. The Lancet Diabetes & Endocrinology 7:726−36 doi: 10.1016/S2213-8587(19)30076-2 |
[2] |
Nordlie RC, Foster JD, Lange AJ. 1999. Regulation of glucose production by the liver. Annual Review of Nutrition 19:379−406 doi: 10.1146/annurev.nutr.19.1.379 |
[3] |
Patel BM, Goyal RK. 2019. Liver and insulin resistance: New wine in old bottle!!! European Journal of Pharmacology 862:172657 doi: 10.1016/j.ejphar.2019.172657 |
[4] |
Liu TY, Shi CX, Gao R, Sun HJ, Xiong XQ, et al. 2015. Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via the PI3K/Akt pathway in type 2 diabetic mice and hepatocytes. Clinical Science 129:839−50 doi: 10.1042/CS20150009 |
[5] |
Gong DY, Chen XY, Guo SX, Wang BC, Li B. 2021. Recent advances and new insights in biosynthesis of dendrobine and sesquiterpenes. Applied Microbiology and Biotechnology 105:6597−606 doi: 10.1007/s00253-021-11534-1 |
[6] |
Feng Y, Jia B, Feng Q, Zhang Y, Chen Y, et al. 2021. Dendrobine attenuates gestational diabetes mellitus in mice by inhibiting Th17 cells. Basic & Clinical Pharmacology & Toxicology 128:379−85 doi: 10.1111/bcpt.13524 |
[7] |
Song TH, Chen XX, Lee CKF, Sze SCW, Feng YB, et al. 2019. Dendrobine targeting JNK stress signaling to sensitize chemotoxicity of cisplatin against non-small cell lung cancer cells in vitro and in vivo. Phytomedicine 53:18−27 doi: 10.1016/j.phymed.2018.06.018 |
[8] |
Kim YR, Han AR, Kim JB, Jung CH. 2021. Dendrobine inhibits γ-irradiation-induced cancer cell migration, invasion and metastasis in non-small cell lung cancer cells. Biomedicines 9:954 doi: 10.3390/biomedicines9080954 |
[9] |
Jiang X, Liu B, Nie Z, Duan L, Xiong Q, et al. 2021. The role of m6A modification in the biological functions and diseases. Signal Transduction and Targeted Therapy 6:74 doi: 10.1038/s41392-020-00450-x |
[10] |
Oerum S, Meynier V, Catala M, Tisné C. 2021. A comprehensive review of m6A/m6Am RNA methyltransferase structures. Nucleic Acids Research 49:7239−55 doi: 10.1093/nar/gkab378 |
[11] |
Zhao W, Qi X, Liu L, Ma S, Liu J, et al. 2020. Epigenetic regulation of m6A modifications in human cancer. Molecular Therapy Nucleic Acids 19:405−12 doi: 10.1016/j.omtn.2019.11.022 |
[12] |
Sun M, Zhang X. 2021. Epigenetic regulation of N6-methyladenosine modifications in obesity. Journal of Diabetes Investigation 12:1306−15 doi: 10.1111/jdi.13571 |
[13] |
Zhao W, Li J, Ma Q, Cai J, Li A, et al. 2022. N6-methyladenosine modification participates in neoplastic immunoregulation and tumorigenesis. Journal of Cellular Physiology 237:2729−39 doi: 10.1002/jcp.30730 |
[14] |
De Jesus DF, Zhang Z, Kahraman S, Brown NK, Chen M, et al. 2019. m6A mRNA methylation regulates human β-cell biology in physiological states and in type 2 diabetes. Nature Metabolism 1:765−74 doi: 10.1038/s42255-019-0089-9 |
[15] |
Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, et al. 2012. Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. Cell 149:1635−46 doi: 10.1016/j.cell.2012.05.003 |
[16] |
Liu N, Dai Q, Zheng G, He C, Parisien M, et al. 2015. N6-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 518:560−64 doi: 10.1038/nature14234 |
[17] |
Zhong H, Tang HF, Kai Y. 2020. N6-methyladenine RNA modification (m6A): an emerging regulator of metabolic diseases. Current Drug Targets 21:1056−67 doi: 10.2174/1389450121666200210125247 |
[18] |
Mo X, Lei S, Zhang Y, Zhang H. 2019. Genome-wide enrichment of m6A-associated single-nucleotide polymorphisms in the lipid loci. The Pharmacogenomics Journal 19:347−57 doi: 10.1038/s41397-018-0055-z |
[19] |
Kang H, Zhang Z, Yu L, Li Y, Liang M, et al. 2018. FTO reduces mitochondria and promotes hepatic fat accumulation through RNA demethylation. Journal of Cellular Biochemistry 119:5676−85 doi: 10.1002/jcb.26746 |
[20] |
Wu J, Li Y, Yu J, Gan Z, Wei W, et al. 2020. Resveratrol Attenuates High-Fat Diet Induced Hepatic Lipid Homeostasis Disorder and Decreases m6A RNA Methylation. Frontiers in Pharmacology 11:568006 doi: 10.3389/fphar.2020.568006 |
[21] |
Lu N, Li X, Yu J, Li Y, Wang C, et al. 2018. Curcumin attenuates lipopolysaccharide-induced hepatic lipid metabolism disorder by modification of m6A rna methylation in piglets. Lipids 53:53−63 doi: 10.1002/lipd.12023 |
[22] |
Sun C, Zhang F, Ge X, Yan T, Chen X, et al. 2007. SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metabolism 6:307−19 doi: 10.1016/j.cmet.2007.08.014 |
[23] |
Wang L, Zhang S, Cheng H, Lv H, Cheng G, et al. 2016. Nrf2-mediated liver protection by esculentoside A against acetaminophen toxicity through the AMPK/Akt/GSK3β pathway. Free Radical Biology & Medicine 101:401−12 doi: 10.1016/j.freeradbiomed.2016.11.009 |
[24] |
Ponugoti B, Dong G, Graves DT. 2012. Role of forkhead transcription factors in diabetes-induced oxidative stress. Journal of Diabetes Research 2012:939751 doi: 10.1155/2012/939751 |
[25] |
Biddinger SB, Kahn CR. 2006. From mice to men: insights into the insulin resistance syndromes. Annual Review of Physiology 68:123−58 doi: 10.1146/annurev.physiol.68.040104.124723 |
[26] |
Rines AK, Sharabi K, Tavares CDJ, Puigserver P. 2016. Targeting hepatic glucose metabolism in the treatment of type 2 diabetes. Nature Reviews Drug Discovery 15:786−804 doi: 10.1038/nrd.2016.151 |
[27] |
Lam TKT. 2016. Hepatic glucose metabolism in 2015: Nutrient and hormone-sensing-dependent regulation. Nature Reviews Endocrinology 12:70−72 doi: 10.1038/nrendo.2015.204 |
[28] |
Barthel A, Schmoll D. 2003. Novel concepts in insulin regulation of hepatic gluconeogenesis. American Journal of Physiology Endocrinology and Metabolism 285:E685−E692 doi: 10.1152/ajpendo.00253.2003 |
[29] |
Yan J, Wang C, Jin Y, Meng Q, Liu Q, et al. 2018. Catalpol ameliorates hepatic insulin resistance in type 2 diabetes through acting on AMPK/NOX4/PI3K/AKT pathway. Pharmacological Research 130:466−80 doi: 10.1016/j.phrs.2017.12.026 |
[30] |
Basu R, Chandramouli V, Dicke B, Landau B, Rizza R. 2005. Obesity and type 2 diabetes impair insulin-induced suppression of glycogenolysis as well as gluconeogenesis. Diabetes 54:1942−48 doi: 10.2337/diabetes.54.7.1942 |
[31] |
Wu C, Okar DA, Kang J, Lange AJ. 2005. Reduction of hepatic glucose production as a therapeutic target in the treatment of diabetes. Current Drug Targets Immune, Endocrine and Metabolic Disorders 5:51−59 doi: 10.2174/1568008053174769 |
[32] |
Whiteman EL, Cho H, Birnbaum MJ. 2002. Role of Akt/protein kinase B in metabolism. Trends in Endocrinology and Metabolism 13:444−51 doi: 10.1016/S1043-2760(02)00662-8 |
[33] |
Klover PJ, Mooney RA. 2004. Hepatocytes: critical for glucose homeostasis. The International Journal of Biochemistry & Cell Biology 36:753−58 doi: 10.1016/j.biocel.2003.10.002 |
[34] |
Shi CX, Zhao MX, Shu XD, Xiong XQ, Wang JJ, et al. 2016. β-aminoisobutyric acid attenuates hepatic endoplasmic reticulum stress and glucose/lipid metabolic disturbance in mice with type 2 diabetes. Scientific Reports 6:21924 doi: 10.1038/srep21924 |
[35] |
Xie W, Ma LL, Xu YQ, Wang BH, Li SM. 2019. METTL3 inhibits hepatic insulin sensitivity via N6-methyladenosine modification of Fasn mRNA and promoting fatty acid metabolism. Biochemical and Biophysical Research Communications 518:120−26 doi: 10.1016/j.bbrc.2019.08.018 |
[36] |
Wang Y, Sun J, Lin Z, Zhang W, Wang S, et al. 2020. m6A mRNA methylation controls functional maturation in neonatal murine β-cells. Diabetes 69:1708−22 doi: 10.2337/db19-0906 |