[1] |
Adjalla C, Tosso F, Salako KV, Assogbadjo AE. 2022. Soil seed bank characteristics along a gradient of past human disturbances in a tropical semi-deciduous forest: Insights for forest management. Forest Ecology and Management 503:119744 doi: 10.1016/j.foreco.2021.119744 |
[2] |
Yang X, Baskin CC, Baskin JM, Pakeman RJ, Huang Z, et al. 2021. Global patterns of potential future plant diversity hidden in soil seed banks. Nature Communications 12:7023 doi: 10.1038/s41467-021-27379-1 |
[3] |
Gong H, Song W, Wang J, Wang X, Ji Y, et al. 2023. Climate factors affect forest biomass allocation by altering soil nutrient availability and leaf traits. Journal of Integrative Plant Biology 65:2292−303 doi: 10.1111/jipb.13545 |
[4] |
Cheng K, Yang H, Guan H, Ren Y, Chen Y, et al. 2024. Unveiling China’s natural and planted forest spatial–temporal dynamics from 1990 to 2020. ISPRS Journal of Photogrammetry and Remote Sensing 209:37−50 doi: 10.1016/j.isprsjprs.2024.01.024 |
[5] |
Hua F, Bruijnzeel LA, Meli P, Martin PA, Zhang J, et al. 2022. The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. Science 376:839−44 doi: 10.1126/science.abl4649 |
[6] |
Guo Q, Ren H. 2014. Productivity as related to diversity and age in planted versus natural forests. Global Ecology and Biogeography 23:1461−71 doi: 10.1111/geb.12238 |
[7] |
Douh C, Daïnou K, Joël Loumeto J, Moutsambote JM, Fayolle A, et al. 2018. Soil seed bank characteristics in two central African forest types and implications for forest restoration. Forest Ecology and Management 409:766−76 doi: 10.1016/j.foreco.2017.12.012 |
[8] |
Liu B, Liu Q, Zhu C, Liu Z, Huang Z, et al. 2022. Seed rain and soil seed bank in Chinese fir plantations and an adjacent natural forest in southern China: implications for the regeneration of native species. Ecology and Evolution 12:e8539 doi: 10.1002/ece3.8539 |
[9] |
Gao J, Ji Y, Zhang X. 2023. Net primary productivity exhibits a stronger climatic response in planted versus natural forests. Forest Ecology and Management 529:120722 doi: 10.1016/j.foreco.2022.120722 |
[10] |
dos Santos DM, da Silva KA, de Albuquerque UP, dos Santos JMFF, Lopes CGR, et al. 2013. Can spatial variation and inter-annual variation in precipitation explain the seed density and species richness of the germinable soil seed bank in a tropical dry forest in north-eastern Brazil? Flora - Morphology, Distribution, Functional Ecology of Plants 208:445−52 doi: 10.1016/j.flora.2013.07.006 |
[11] |
Plue J, De Frenne P, Acharya K, Brunet J, Chabrerie O, et al. 2013. Climatic control of forest herb seed banks along a latitudinal gradient. Global Ecology and Biogeography 22:1106−17 doi: 10.1111/geb.12068 |
[12] |
Chick MP, Nitschke CR, Cohn JS, Penman TD, York A. 2018. Factors influencing above-ground and soil seed bank vegetation diversity at different scales in a quasi-Mediterranean ecosystem. Journal of Vegetation Science 29:684−94 doi: 10.1111/jvs.12649 |
[13] |
Ma M, Collins SL, Du G. 2020. Direct and indirect effects of temperature and precipitation on alpine seed banks in the Tibetan Plateau. Ecological Applications 30:e02096 doi: 10.1002/eap.2096 |
[14] |
Augusto L, Boča A. 2022. Tree functional traits, forest biomass, and tree species diversity interact with site properties to drive forest soil carbon. Nature Communications 13:1097 doi: 10.1038/s41467-022-28748-0 |
[15] |
Ma M, Baskin CC, Zhao Y, An H. 2023. Light controls alpine meadow community assembly during succession by affecting species recruitment from the seed bank. Ecological Applications 33:e2782 doi: 10.1002/eap.2782 |
[16] |
Allan E. 2022. Shedding light on declines in diversity of grassland plants. Nature 611:240−41 doi: 10.1038/d41586-022-03458-1 |
[17] |
Gessler A, Schaub M, McDowell NG. 2017. The role of nutrients in drought-induced tree mortality and recovery. New Phytologist 214:513−20 doi: 10.1111/nph.14340 |
[18] |
Wang J, Wang X, Ji Y, Gao J. 2022. Climate factors determine the utilization strategy of forest plant resources at large scales. Frontiers in Plant Science 13:990441 doi: 10.3389/fpls.2022.990441 |
[19] |
Walck JL, Hidayati SN, Dixon KW, Thompson K, Poschlod P. 2011. Climate change and plant regeneration from seed. Global Change Biology 17:2145−61 doi: 10.1111/j.1365-2486.2010.02368.x |
[20] |
He M, Lv L, Li H, Meng W, Zhao N. 2016. Analysis on soil seed bank diversity characteristics and its relation with soil physical and chemical properties after substrate addition. PLoS ONE 11:e0147439 doi: 10.1371/journal.pone.0147439 |
[21] |
Blank RR. 2010. Intraspecific and interspecific pair-wise seedling competition between exotic annual grasses and native perennials: plant–soil relationships. Plant and Soil 326:331−43 doi: 10.1007/s11104-009-0012-3 |
[22] |
da Conceição de Matos C, da Silva Teixeira R, da Silva IR, Costa MD, da Silva AA. 2019. Interspecific competition changes nutrient : nutrient ratios of weeds and maize. Journal of Plant Nutrition and Soil Science 182:286−95 doi: 10.1002/jpln.201800171 |
[23] |
Eldridge DJ, Travers SK, Val J, Ding J, Wang JT, et al. 2021. Experimental evidence of strong relationships between soil microbial communities and plant germination. Journal of Ecology 109:2488−98 doi: 10.1111/1365-2745.13660 |
[24] |
Zhang D, Zhang J, Yang W, Wu F, Huang Y. 2014. Plant and soil seed bank diversity across a range of ages of Eucalyptus grandis plantations afforested on arable lands. Plant and Soil 376:307−25 doi: 10.1007/s11104-013-1954-z |
[25] |
Larson JE, Suding KN. 2022. Seed bank bias: Differential tracking of functional traits in the seed bank and vegetation across a gradient. Ecology 103:e3651 doi: 10.1002/ecy.3651 |
[26] |
Zhao Y, Li M, Deng J, Wang B. 2021. Afforestation affects soil seed banks by altering soil properties and understory plants on the eastern Loess Plateau, China. Ecological Indicators 126:107670 doi: 10.1016/j.ecolind.2021.107670 |
[27] |
Kůrová J. 2016. The impact of soil properties and forest stand age on the soil seed bank. Folia Geobotanica 51:27−37 doi: 10.1007/s12224-016-9236-1 |
[28] |
Kassa G, Molla E, Abiyu A. 2019. Effects of Eucalyptus tree plantations on soil seed bank and soil physicochemical properties of Qimbaba forest. Cogent Food & Agriculture 5:1711297 doi: 10.1080/23311932.2019.1711297 |
[29] |
Wang S, Wu M, Zhong S, Sun J, Mao X, et al. 2023. A rapid and quantitative method for determining seed viability using 2,3,5-triphenyl tetrazolium chloride (TTC): with the example of wheat seed. Molecules 28:6828 doi: 10.3390/molecules28196828 |
[30] |
Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, et al. 2022. The global spectrum of plant form and function: enhanced species-level trait dataset. Scientific Data 9:755 doi: 10.1038/s41597-022-01774-9 |
[31] |
Li Q, Zhao CZ, Kang MP, Li XY. 2021. The relationship of the main root-shoot morphological characteristics and biomass allocation of Saussurea salsa under different habitat conditions in Sugan lake wetland on the northern margin of the Qinghai-Tibet Plateau. Ecological Indicators 128:107836 doi: 10.1016/j.ecolind.2021.107836 |
[32] |
Zhou W, Wang Z, Xing W, Liu G. 2014. Plasticity in latitudinal patterns of leaf N and P of Oryza rufipogon in China. Plant Biology 16:917−23 doi: 10.1111/plb.12147 |
[33] |
Engel T, Bruelheide H, Hoss D, Sabatini FM, Altman J, et al. 2023. Traits of dominant plant species drive normalized difference vegetation index in grasslands globally. Global Ecology and Biogeography 32:695−706 doi: 10.1111/geb.13644 |
[34] |
Wang J, Li Y, Gao J. 2023. Time effects of global change on forest productivity in China from 2001 to 2017. Plants 12:1404 doi: 10.3390/plants12061404 |
[35] |
Wang X, Chen X, Xu J, Ji Y, Du X, Gao J. 2023. Precipitation dominates the allocation strategy of above- and belowground biomass in plants on macro scales. Plants 12:2843 doi: 10.3390/plants12152843 |
[36] |
Wang J, Zhang X, Wang R, Yu M, Chen X, Zhu C, et al. 2024. Climate factors influence above- and belowground biomass allocations in alpine meadows and desert steppes through alterations in soil nutrient availability. Plants 13:727 doi: 10.3390/plants13050727 |
[37] |
Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, et al. 2015. Structure and function of the global ocean microbiome. Science 348:1261359 doi: 10.1126/science.1261359 |
[38] |
Franckowiak RP, Panasci M, Jarvis KJ, Acuña-Rodriguez IS, Landguth EL, et al. 2017. Model selection with multiple regression on distance matrices leads to incorrect inferences. PLoS ONE 12:e0175194 doi: 10.1371/journal.pone.0175194 |
[39] |
Lai J, Zou Y, Zhang J, Peres-Neto PR. 2022. Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca. hp R package. Methods in Ecology and Evolution 13:782−788 doi: 10.1111/2041-210X.13800 |
[40] |
Chen J, Xiao Q, Xu D, Li Z, Chao L, et al. 2023. Soil microbial community composition and co-occurrence network responses to mild and severe disturbances in volcanic areas. Science of The Total Environment 901:165889 doi: 10.1016/j.scitotenv.2023.165889 |
[41] |
Wang H, Huang W, He Y, Zhu Y. 2023. Effects of warming and precipitation reduction on soil respiration in Horqin sandy grassland, northern China. CATENA 233:107470 doi: 10.1016/j.catena.2023.107470 |
[42] |
Zobel M, Kalamees R, Püssa K, Roosaluste E, Moora M. 2007. Soil seed bank and vegetation in mixed coniferous forest stands with different disturbance regimes. Forest Ecology and Management 250:71−76 doi: 10.1016/j.foreco.2007.03.011 |
[43] |
Diao J, Liu J, Zhu Z, Wei X, Li M. 2022. Active forest management accelerates carbon storage in plantation forests in Lishui, southern China. Forest Ecosystems 9:100004 doi: 10.1016/j.fecs.2022.100004 |
[44] |
Parhizkar M, Shabanpour M, Miralles I, Zema DA, Lucas-Borja ME. 2021. Effects of plant species on soil quality in natural and planted areas of a forest park in northern Iran. Science of The Total Environment 778:146310 doi: 10.1016/j.scitotenv.2021.146310 |
[45] |
Shibru S, Asres H, Getaneh S, Gatew S. 2022. Aboveground and soil seed bank woody flora comparison in plantation and natural forest, southern Ethiopia: an implication for forest ecosystem sustainability. Journal of Sustainable Forestry 41:829−46 doi: 10.1080/10549811.2021.1979414 |
[46] |
Jin Y, Liu C, Qian SS, Luo Y, Zhou R, et al. 2022. Large-scale patterns of understory biomass and its allocation across China's forests. Science of The Total Environment 804:150169 doi: 10.1016/j.scitotenv.2021.150169 |
[47] |
Ooi MKJ, Auld TD, Denham AJ. 2009. Climate change and bet-hedging: interactions between increased soil temperatures and seed bank persistence. Global Change Biology 15:2375−86 doi: 10.1111/j.1365-2486.2009.01887.x |
[48] |
An H, Zhao Y, Ma M. 2020. Precipitation controls seed bank size and its role in alpine meadow community regeneration with increasing altitude. Global Change Biology 26:5767−77 doi: 10.1111/gcb.15260 |
[49] |
Yan A, Chen Z. 2020. The Control of Seed Dormancy and Germination by Temperature, Light and Nitrate. Botanical Review 86:39−75 doi: 10.1007/s12229-020-09220-4 |
[50] |
Xu F, Tang J, Wang S, Cheng X, Wang H, et al. 2022. Antagonistic control of seed dormancy in rice by two bHLH transcription factors. Nature Genetics 54:1972−82 doi: 10.1038/s41588-022-01240-7 |
[51] |
Ni Y, Xiao W, Liu J, Jian Z, Li M, et al. 2023. Radial growth-climate correlations of Pinus massoniana in natural and planted forest stands along a latitudinal gradient in subtropical central China. Agricultural and Forest Meteorology 334:109422 doi: 10.1016/j.agrformet.2023.109422 |
[52] |
Liu D, Wang T, Peñuelas J, Piao S. 2022. Drought resistance enhanced by tree species diversity in global forests. Nature Geoscience 15:800−4 doi: 10.1038/s41561-022-01026-w |
[53] |
Jiang D, Li Q, Geng Q, Zhang M, Xu C, et al. 2021. Nutrient resorption and stoichiometric responses of poplar (Populus deltoids) plantations to N addition in a coastal region of eastern China. Journal of Plant Ecology 14:591−604 doi: 10.1093/jpe/rtab015 |
[54] |
Zhang YW, Guo Y, Tang Z, Feng Y, Zhu X, et al. 2021. Patterns of nitrogen and phosphorus pools in terrestrial ecosystems in China. Earth System Science Data 13:5337−51 doi: 10.5194/essd-13-5337-2021 |
[55] |
Walters MB, Reich PB. 2000. Seed size, nitrogen supply, and growth rate affect tree seedling survival in deep shade. Ecology 81:1887−901 doi: 10.1890/0012-9658(2000)081[1887:SSNSAG]2.0.CO;2 |
[56] |
Chen X, Chen HYH, Chang SX. 2022. Meta-analysis shows that plant mixtures increase soil phosphorus availability and plant productivity in diverse ecosystems. Nature Ecology & Evolution 6:1112−21 doi: 10.1038/s41559-022-01794-z |
[57] |
Maighal M, Salem M, Kohler J, Rillig MC. 2016. Arbuscular mycorrhizal fungi negatively affect soil seed bank viability. Ecology and Evolution 6:7683−89 doi: 10.1002/ece3.2491 |
[58] |
Basto S, Thompson K, Rees M. 2015. The effect of soil pH on persistence of seeds of grassland species in soil. Plant Ecology 216:1163−75 doi: 10.1007/s11258-015-0499-z |
[59] |
Yang Y, Li P, He H, Zhao X, Datta A, et al. 2015. Long-term changes in soil pH across major forest ecosystems in China. Geophysical Research Letters 42:933−40 doi: 10.1002/2014GL062575 |
[60] |
Šipek M, Ravnjak T, Šajna N. 2023. Understorey species distinguish late successional and ancient forests after decades of minimum human intervention: A case study from Slovenia. Forest Ecosystems 10:100096 doi: 10.1016/j.fecs.2023.100096 |
[61] |
Wang J, Yan Q, Lu D, Diao M, Yan T, et al. 2019. Effects of microhabitat on rodent-mediated seed dispersal in monocultures with thinning treatment. Agricultural and Forest Meteorology 275:91−99 doi: 10.1016/j.agrformet.2019.05.017 |
[62] |
Yan P, He N, Yu K, Xu L, Van Meerbeek K. 2023. Integrating multiple plant functional traits to predict ecosystem productivity. Communications Biology 6:239 doi: 10.1038/s42003-023-04626-3 |
[63] |
Adler PB, Smull D, Beard KH, Choi RT, Furniss T, et al. 2018. Competition and coexistence in plant communities: intraspecific competition is stronger than interspecific competition. Ecology Letters 21:1319−29 doi: 10.1111/ele.13098 |
[64] |
Ray T, Delory BM, Beugnon R, Bruelheide H, Cesarz S, et al. 2023. Tree diversity increases productivity through enhancing structural complexity across mycorrhizal types. Science Advances 9:eadi2362 doi: 10.1126/sciadv.adi2362 |
[65] |
Tang B, Rocci KS, Lehmann A, Rillig MC. 2023. Nitrogen increases soil organic carbon accrual and alters its functionality. Global Change Biology 29:1971−83 doi: 10.1111/gcb.16588 |
[66] |
Ochoa-Hueso R, Manrique E. 2014. Impacts of altered precipitation, nitrogen deposition and plant competition on a Mediterranean seed bank. Journal of Vegetation Science 25:1289−98 doi: 10.1111/jvs.12183 |
[67] |
Zhang K, Qiu Y, Zhao Y, Wang S, Deng J, et al. 2023. Moderate precipitation reduction enhances nitrogen cycling and soil nitrous oxide emissions in a semi-arid grassland. Global Change Biology 29:3114−29 doi: 10.1111/gcb.16672 |
[68] |
Schmidt I, Leuschner C, Mölder A, Schmidt W. 2009. Structure and composition of the seed bank in monospecific and tree species-rich temperate broad-leaved forests. Forest Ecology and Management 257:695−702 doi: 10.1016/j.foreco.2008.09.052 |