[1] |
Sun J, Chen T, Wu Y, Tao J. 2021. Identification and functional verification of PLFT gene associated with flowering in herbaceous peony based on transcriptome analysis. Ornamental Plant Research 1(1):7 doi: 10.48130/OPR-2021-0007 |
[2] |
Zhang D, Xie A, Yang X, Shi Y, Yang L, et al. 2022. Study of 15 varieties of herbaceous peony pollen submicroscopic morphology and phylogenetic relationships. Horticulturae 8(12):1161 doi: 10.3390/horticulturae8121161 |
[3] |
Wang X, Shi X, Zhang R, Zhang K, Shao L, et al. 2022. Impact of summer heat stress inducing physiological and biochemical responses in herbaceous peony cultivars (P. lactiflora Pall.) from different latitudes. Industrial Crops and Products 184:115000 doi: 10.1016/j.indcrop.2022.115000 |
[4] |
Song C, Wang Q, Teixeira da Silva JA, Yu X. 2018. Identification of floral fragrances and analysis of fragrance patterns in herbaceous peony cultivars. Journal of the American Society for Horticultural Science 143(4):248−58 doi: 10.21273/JASHS04420-18 |
[5] |
Sun Y, Wang W, Zhao L, Zheng C, Ma F. 2019. Changes in volatile organic compounds and differential expression of aroma-related genes during flowering of Rosa rugosa 'Shanxian'. Horticulture, Environment, and Biotechnology 60:741−51 doi: 10.1007/s13580-019-00166-0 |
[6] |
Du F, Wang T, Fan JM, Liu ZZ, Zong JX, et al. 2019. Volatile composition and classification of Lilium flower aroma types and identification, polymorphisms, and alternative splicing of their monoterpene synthase genes. Horticulture Research 6:110 doi: 10.1038/s41438-019-0192-9 |
[7] |
Jin F, Xu J, Liu XR, Regenstein JM, Wang FJ. 2019. Roasted tree peony (Paeonia ostii) seed oil: benzoic acid levels and physicochemical characteristics. International Journal of Food Properties 22(1):499−510 doi: 10.1080/10942912.2019.1588902 |
[8] |
El-Hawary SS, El-Tantawi ME, Kirollos FN, Hammam WE. 2018. Chemical composition, in vitro cytotoxic and antimicrobial activities of volatile constituents from Pyrus communis L. and Malus domestica Borkh. fruits cultivated in Egypt. Journal of Essential Oil Bearing Plants 21(6):1642−51 doi: 10.1080/0972060X.2018.1553637 |
[9] |
Hu J, Huang W, Zhang F, Luo X, Chen Y, et al. 2020. Variability of volatile compounds in the medicinal plant Dendrobium officinale from different regions. Molecules 25(21):5046 doi: 10.3390/molecules25215046 |
[10] |
Liu G, Fu J, Wang L, Fang M, Zhang W, et al. 2023. Diverse O-methyltransferases catalyze the biosynthesis of floral benzenoids that repel aphids from the flowers of waterlily Nymphaea prolifera. Horticulture Research 10(12):uhad237 doi: 10.1093/hr/uhad237 |
[11] |
Pan Y, Quan W, Li C, Hao J, Gao Y. 2021. Analysis of allelochemicals in the leaves of four alpine rhododendrons by gas chromatography-mass spectrometry. BioResources 16(2):3096−102 doi: 10.15376/biores.16.2.3096-3102 |
[12] |
Bera P, Mukherjee C, Mitra A. 2017. Enzymatic production and emission of floral scent volatiles in Jasminum sambac. Plant Science 256:25−38 doi: 10.1016/j.plantsci.2016.11.013 |
[13] |
Yang L, Aobulikasimu·Nuerbiye, Cheng P, Wang JH, Li H. 2017. Analysis of floral volatile components and antioxidant activity of different varieties of Chrysanthemum morifolium. Molecules 22:1790 doi: 10.3390/molecules22101790 |
[14] |
Xin H, Wu B, Zhang H, Wang C, Li J, et al. 2013. Characterization of volatile compounds in flowers from four groups of sweet osmanthus (Osmanthus fragrans) cultivars. Canadian Journal of Plant Science 93(5):923−31 doi: 10.4141/cjps2012-333 |
[15] |
Pereira AG, Cassani L, Liu C, Li N, Chamorro F, et al. 2023. Camellia japonica flowers as a source of nutritional and bioactive compounds. Foods 12(15):2825 doi: 10.3390/foods12152825 |
[16] |
Yang S, Meng Z, Li Y, Chen R, Yang Y, et al. 2021. Evaluation of physiological characteristics, soluble sugars, organic acids and volatile compounds in 'Orin' apples (Malus domestica) at different ripening stages. Molecules 26(4):807 doi: 10.3390/molecules26040807 |
[17] |
Xiong H, Yang Y, Guo W, Yuan J, Yang W, et al. 2024. Study on quality difference between Belamcanda chinensis (L.) DC and Iris tectorum Maxim. based on chemical chromatogram analysis, biological activity evaluation and in vivo distribution rule. Journal of Ethnopharmacology 319:117091 doi: 10.1016/j.jep.2023.117091 |
[18] |
Wang Z, Zhao X, Tang X, Yuan Y, Xiang M, et al. 2023. Analysis of fragrance compounds in flowers of Chrysanthemum genus. Ornamental Plant Research 3:12 doi: 10.48130/OPR-2023-0012 |
[19] |
Li Z, Zhang X, Li K, Wang P, Li C, et al. 2022. Integrative analysis of transcriptomic and volatile compound profiles sheds new insights into the terpenoid biosynthesis in tree peony. Industrial Crops and Products 188:115672 doi: 10.1016/j.indcrop.2022.115672 |
[20] |
Knudsen JT, Gershenzon J. 2020. The chemical diversity of floral scent. In Biology of Plant Volatiles, 2nd edition, eds Pichersky E, Dudareva N. Boca Raton: CRC Press. pp. 57−78. doi: 10.1201/9780429455612-5 |
[21] |
Stamm JD. 2023. The language of flowers in the time of COVID: finding solace in zen, nature and ikebana. US: John Hunt Publishing. pp. 152−53. |
[22] |
Nadeem MA, Dubey R, Singh A, Pandey R, Bundela KS. 2017. Processing and quality evaluation of menthol mint oil. International Journal Of Mathematics And Statistics Invention 5(2):68−70 |
[23] |
Zhang Y, Li C, Wang S, Yuan M, Li B, et al. 2021. Transcriptome and volatile compounds profiling analyses provide insights into the molecular mechanism underlying the floral fragrance of tree peony. Industrial Crops and Products 162:113286 doi: 10.1016/j.indcrop.2021.113286 |
[24] |
Qiao Z, Hu H, Shi S, Yuan X, Yan B, et al. 2021. An update on the function, biosynthesis and regulation of floral volatile terpenoids. Horticulturae 7(11):451 doi: 10.3390/horticulturae7110451 |
[25] |
Li R, Song C, Niu T, Wei Z, Guo L, et al. 2023. The emitted pattern analysis of flower volatiles and cloning of PsGDS gene in tree peony cultivar 'High Noon'. Acta Horticulturae Sinica 50(2):331−44 doi: 10.16420/j.issn.0513-353x.2021-0870 |
[26] |
Zhao Q, Gu L, Li Y, Zhi H, Luo J, et al. 2023. Volatile composition and classification of Paeonia lactiflora flower aroma types and identification of the fragrance-related genes. International Journal of Molecular Sciences 24(11):9410 doi: 10.3390/ijms24119410 |
[27] |
Li S, Zhang L, Sun M, Lv M, Yang Y, et al. 2023. Biogenesis of flavor-related linalool is diverged and genetically conserved in tree peony (Paeonia × suffruticosa). Horticulture Research 10(2):uhac253 doi: 10.1093/hr/uhac253 |
[28] |
Wang S, Luo Y, Niu T, Prijic Z, Markovic T, et al. 2024. Comparative analysis of the volatile components of six herbaceous peony cultivars under ground-planted and vase-inserted conditions. Scientia Horticulturae 334:113320 doi: 10.1016/j.scienta.2024.113320 |
[29] |
Wu Y, Li L, Yuan W, Hu J , Lv Z. 2021. Application of GC × GC coupled with TOF–MS for the trace analysis of chemical components and exploration the characteristic aroma profile of essential oils obtained from two tree peony species (Paeonia rockii and Paeonia ostii). European Food Research and Technology 247:2591−608 doi: 10.1007/s00217-021-03823-w |
[30] |
Li X, Wu J, Wang H, Zhang K, Song F. 2022. Evaluation and comparison of pear flower aroma characteristics of seven cultivars. Horticulturae 8(5):352 doi: 10.3390/horticulturae8050352 |
[31] |
Yang YH, Zhao J, Du ZZ. 2022. Unravelling the key aroma compounds in the characteristic fragrance of Dendrobium officinale flowers for potential industrial application. Phytochemistry 200:113223 doi: 10.1016/j.phytochem.2022.113223 |
[32] |
Kimani SK, Wang S, Xie J, Bao T, Shan X, et al. 2024. Integration of RNA-Seq and metabolite analysis reveals the key floral scent biosynthetic genes in herbaceous peony. Horticulturae 10(6):617 doi: 10.3390/horticulturae10060617 |
[33] |
Pott DM, Osorio S, Vallarino JG. 2019. From central to specialized metabolism: an overview of some secondary compounds derived from the primary metabolism for their role in conferring nutritional and organoleptic characteristics to fruit. Frontiers in Plant Science 10:835 doi: 10.3389/fpls.2019.00835 |
[34] |
Hirata H, Ohnishi T, Watanabe N. 2016. Biosynthesis of floral scent 2-phenylethanol in rose flowers. Bioscience, Biotechnology, and Biochemistry 80(10):1865−73 doi: 10.1080/09168451.2016.1191333 |
[35] |
Yetisen M, Guclu G, Kelebek H, Selli S. 2022. Elucidation of key aroma enhancement in cloudy lemon juices by the addition of peel oil using GC–MS-Olfactometry. International Journal of Food Science & Technology 57(8):5280−88 doi: 10.1111/ijfs.15857 |
[36] |
Abbas F, Zhou Y, O'Neill Rothenberg D, Alam I, Ke Y, et al. 2023. Aroma components in horticultural crops: chemical diversity and usage of metabolic engineering for industrial applications. Plants 12(9):1748 doi: 10.3390/plants12091748 |
[37] |
Farré-Armengol G, Filella I, Llusià J, Peñuelas J. 2017. β-Ocimene, a key floral and foliar volatile involved in multiple interactions between plants and other organisms. Molecules 22(7):1148 doi: 10.3390/molecules22071148 |
[38] |
Niu TF, Xue X, Guo LL, Yu M, Zhang CJ, et al. 2023. Effects of exogenous methyl jasmonate on volatile components and content of Paeonia suffruticosa 'Luoyanghong' in greenhouse. Scientia Silvae Sinicae 59(5):53−60 doi: 10.11707/j.1001-7488.LYKX20210977 |
[39] |
Saad AM, Mohamed AS, Ramadan MF. 2021. Storage and heat processing affect flavors of cucumber juice enriched with plant extracts. International Journal of Vegetable Science 27(3):277−87 doi: 10.1080/19315260.2020.1779895 |
[40] |
Wang T, Xie A, Zhang D, Liu Z, Li X, et al. 2021. Analysis of the volatile components in flowers of Paeonia lactiflora Pall. var. Trichocarpa. American Journal of Plant Sciences 12(01):146−62 doi: 10.4236/ajps.2021.121009 |
[41] |
Hosseini H, Zahedi B, Jowkar A, Kermani MJ, Karami A. 2021. Investigation of floral scent and essential oil of Rosa iberica petals. Journal of Ornamental Plants 11(2):89−97 |
[42] |
Zhao G, Ding LL, Hadiatullah H, Li S, Wang X, et al. 2020. Characterization of the typical fragrant compounds in traditional Chinese-type soy sauce. Food Chemistry 312:126054 doi: 10.1016/j.foodchem.2019.126054 |
[43] |
Chinyere I, Julius IU. 2020. Determination of aroma components in Vitex doniana fruit syrup following hydrodistillation extraction. Journal of American Science 16(9):84−93 doi: 10.7537/marsjas160920.07 |
[44] |
Wang X, Xiong H, Wang S, Zhang Y, Song Z, et al. 2023. Physicochemical analysis, sensorial evaluation, astringent component identification and aroma-active compounds of herbaceous peony (Paeonia lactiflora Pall.) black tea. Industrial Crops and Products 193:116159 doi: 10.1016/j.indcrop.2022.116159 |
[45] |
Xiao Y, Huang Y, Chen Y, Xiao L, Zhang X, et al. 2022. Discrimination and characterization of the volatile profiles of five Fu brick teas from different manufacturing regions by using HS–SPME/GC–MS and HS–GC–IMS. Current Research in Food Science 5:1788−807 doi: 10.1016/j.crfs.2022.09.024 |
[46] |
Orodu VE. 2021. Migration and degradation by volatile compounds from scent leaf (Ocimum gratissimum) on polyethylene terephthalate packaged water. Chemistry and Physics of Polymers 1(1):1−11 |
[47] |
Hoepflinger MC, Barman M, Dötterl S, Tenhaken R. 2024. A novel O-methyltransferase Cp4MP-OMT catalyses the final step in the biosynthesis of the volatile 1,4-dimethoxybenzene in pumpkin (Cucurbita pepo) flowers. BMC Plant Biology 24:294 doi: 10.1186/s12870-024-04955-3 |
[48] |
Zhang HX, Hu ZH, Leng PS, Wang WH, Xu F, et al. 2013. Qualitative and quantitative analysis of floral volatile components from different varieties of Lilium spp. Scientia Agricultura Sinica 46:790−99 doi: 10.3864/j.issn.0578-1752.2013.04.013 |
[49] |
Luo X, Yuan M, Li B, Li C, Zhang Y, et al. 2020. Variation of floral volatiles and fragrance reveals the phylogenetic relationship among nine wild tree peony species. Flavour and Fragrance Journal 35(2):227−41 doi: 10.1002/ffj.3558 |
[50] |
Mostafa S, Wang Y, Zeng W, Jin B. 2022. Floral scents and fruit aromas: functions, compositions, biosynthesis, and regulation. Frontiers in Plant Science 13:860157 doi: 10.3389/fpls.2022.860157 |
[51] |
Zhao Q, Zhang M, Gu L, Yang Z, Li Y, et al. 2024. Transcriptome and volatile compounds analyses of floral development provide insight into floral scent formation in Paeonia lactiflora 'Wu Hua Long Yu'. Frontiers in Plant Science 15:1303156 doi: 10.3389/fpls.2024.1303156 |
[52] |
Ma H, Zhang C, Niu T, Chen M, Guo L, et al. 2023. Identification of floral volatile components and expression analysis of controlling gene in Paeonia ostii 'Fengdan' under different cultivation conditions. Plants 12(13):2453 doi: 10.3390/plants12132453 |
[53] |
Middleton R, Tunstad SA, Knapp A, Winters S, McCallum S, et al. 2024. Self-assembled, disordered structural color from fruit wax bloom. Science Advances 10(6):eadk4219 doi: 10.1126/sciadv.adk4219 |
[54] |
Su X. 2010. Alcohols compound: the basic material of aromatic chemicals. Value Engineering 29(3):39 doi: 10.14018/j.cnki.cn13-1085/n.2010.03.102 |
[55] |
Englezos V, Torchio F, Cravero F, Marengo F, Giacosa S, et al. 2016. Aroma profile and composition of Barbera wines obtained by mixed fermentations of Starmerella bacillaris (synonym Candida zemplinina) and Saccharomyces cerevisiae. LWT 73:567−75 doi: 10.1016/j.lwt.2016.06.063 |
[56] |
Wang W, Ge J, Zhang Y, Zhang J. 2024. The male's scent triggered a neural response in females despite ambiguous behavioral response in Asian house rats. Integrative Zoology 19(4):694−709 doi: 10.1111/1749-4877.12768 |
[57] |
Song C, Ma H, Li R, Zhao G, Niu T, et al. 2024. Analysis of the emitted pattern of floral volatiles and cloning and functional analysis of the PsuLIS gene in tree peony cultivar 'High Noon'. Scientia Horticulturae 326:112750 doi: 10.1016/j.scienta.2023.112750 |