[1] |
Mazzola M, Gu YH. 2000. Impact of wheat cultivation on microbial communities from replant soils and apple growth in greenhouse trials. Phytopathology 90:114−19 doi: 10.1094/PHYTO.2000.90.2.114 |
[2] |
Somera TS, Mazzola M. 2022. Toward a holistic view of orchard ecosystem dynamics: a comprehensive review of the multiple factors governing development or suppression of apple replant disease. Frontiers in Microbiology 13:949404 doi: 10.3389/fmicb.2022.949404 |
[3] |
Tewoldemedhin YT, Mazzola M, Labuschagne I, McLeod A. 2011. A multi-phasic approach reveals that apple replant disease is caused by multiple biological agents, with some agents acting synergistically. Soil Biology and Biochemistry 43:1917−27 doi: 10.1016/j.soilbio.2011.05.014 |
[4] |
Rumberger A, Merwin IA, Thies JE. 2007. Microbial community development in the rhizosphere of apple trees at a replant disease site. Soil Biology and Biochemistry 39:1645−54 doi: 10.1016/j.soilbio.2007.01.023 |
[5] |
Wang G, Yin C, Pan F, Wang X, Xiang L, et al. 2018. Analysis of the fungal community in apple replanted soil around Bohai Gulf. Horticultural Plant Journal 4:175−81 doi: 10.1016/j.hpj.2018.05.003 |
[6] |
Liu X, Xu S, Wang X, Xin L, Wang L, et al. 2022. MdBAK1 overexpression in apple enhanced resistance to replant disease as well as to the causative pathogen Fusarium oxysporum. Plant Physiology and Biochemistry 179:144−57 doi: 10.1016/j.plaphy.2022.03.014 |
[7] |
Yin C, Xiang L, Wang G, Wang Y, Shen X, et al. 2017. Phloridzin promotes the growth of Fusarium moniliforme (Fusarium verticillioides). Scientia Horticulturae 214:187−94 doi: 10.1016/j.scienta.2016.11.035 |
[8] |
Xiang L, Wang M, Pan F, Wang G, Jiang W, et al. 2021. Transcriptome analysis Malus domestica 'M9T337' root molecular responses to Fusarium solani infection. Physiological and Molecular Plant Pathology 113:101567 doi: 10.1016/j.pmpp.2020.101567 |
[9] |
Wang H, Zhao L, Jiang W, Zhang R, Chen R, et al. 2021. Effects of Allium fistulosum-Brassica juncea-Triticum aestivum rotation a year on the soil microbial environment and the subsequent growth of young apple trees. Scientia Horticulturae 290:110549 doi: 10.1016/j.scienta.2021.110549 |
[10] |
Manici LM, Kelderer M, Caputo F, Nicoletti F, De Luca Picione F, et al. 2015. Impact of cover crop in pre-plant of apple orchards: relationship between crop health, root inhabiting fungi and rhizospheric bacteria. Canadian Journal of Plant Science 95:947−58 doi: 10.4141/cjps-2015-013 |
[11] |
Mazzola M, Hewavitharana SS, Strauss SL. 2015. Brassica seed meal soil amendments transform the rhizosphere microbiome and improve apple production through resistance to pathogen reinfestation. Phytopathology 105:460−69 doi: 10.1094/PHYTO-09-14-0247-R |
[12] |
Chen R, Jiang W, Wang H, Pan F, Fan H, et al. 2021. Effects of different fumigants on the replanted soil environment and growth of Malus hupehensis Rehd. seedlings. HortScience 56:491−99 doi: 10.21273/HORTSCI15660-20 |
[13] |
Jiang W, Chen R, Zhao L, Qin L, Fan H, et al. 2022. Chemical fumigants control apple replant disease: microbial community structure-mediated inhibition of Fusarium and degradation of phenolic acids. Journal of Hazardous Materials 440:129786 doi: 10.1016/j.jhazmat.2022.129786 |
[14] |
Jones JDG, Dangl JL. 2006. The plant immune system. Nature 444:323−29 doi: 10.1038/nature05286 |
[15] |
Zasada IA, Halbrendt JM, Kokalis-Burelle N, LaMondia J, McKenry MV, et al. 2010. Managing nematodes without methyl bromide. Annual Review of Phytopathology 48:311−28 doi: 10.1146/annurev-phyto-073009-114425 |
[16] |
Park MG, Lee BH, Yang JO, Kim BS, Roh GH, et al. 2021. Ethyl formate as a methyl bromide alternative for fumigation of citrus: efficacy, fruit quality, and workplace safety. Journal of Economic Entomology 114(6):2290−96 doi: 10.1093/jee/toab175 |
[17] |
Martin FN. 2003. Development of alternative strategies for management of soilborne pathogens currently controlled with methyl bromide. Annual Review of Phytopathology 41:325−50 doi: 10.1146/annurev.phyto.41.052002.095514 |
[18] |
Lahlali R, Ezrari S, Radouane N, Kenfaoui J, Esmaeel Q, et al. 2022. Biological control of plant pathogens: a global perspective. Microorganisms 10:596 doi: 10.3390/microorganisms10030596 |
[19] |
Jiang W, Chen R, Zhao L, Duan Y, Wang H, et al. 2023. Isolation of phloridzin-degrading, IAA-producing bacterium Ochrobactrum haematophilum and its effects on the apple replant soil environment. Horticultural Plant Journal 9(2):199−208 doi: 10.1016/j.hpj.2022.08.010 |
[20] |
Hirsch M, Burges PL, Migueliz L, Villarreal NM, Marina M. 2024. Isolation of beneficial bacteria from strawberry (Fragaria × ananassa, Duch). Potentialities for fungal disease control and plant growth promotion. Plant Growth Regulation 102:135−52 doi: 10.1007/s10725-023-00989-z |
[21] |
Berendsen RL, Vismans G, Yu K, Song Y, de Jonge R, et al. 2018. Disease-induced assemblage of a plant-beneficial bacterial consortium. The ISME Journal 12:1496−507 doi: 10.1038/s41396-018-0093-1 |
[22] |
Yang Y, Shah J, Klessig DF. 1997. Signal perception and transduction in plant defense responses. Genes & Development 11:1621−39 doi: 10.1101/gad.11.13.1621 |
[23] |
Manzoor MA, Xu Y, Lv Z, Xu J, Wang Y, et al. 2023. Fruit crop abiotic stress management: a comprehensive review of plant hormones mediated responses. Fruit Research 3:30 doi: 10.48130/FruRes-2023-0030 |
[24] |
Wu W, Fu P, Lu J. 2022. Grapevine WRKY transcription factors. Fruit Research 2:10 doi: 10.48130/FruRes-2022-0010 |
[25] |
Zhang K, Liu F, Wang Z, Zhuo C, Hu K, et al. 2022. Transcription factor WRKY28 curbs WRKY33-mediated resistance to Sclerotinia sclerotiorum in Brassica napus. Plant Physiology 190:2757−74 doi: 10.1093/plphys/kiac439 |
[26] |
Abbruscato P, Nepusz T, Mizzi L, Del Corvo M, Morandini P, et al. 2012. OsWRKY22, a monocot WRKY gene, plays a role in the resistance response to blast. Molecular Plant Pathology 13:828−41 doi: 10.1111/j.1364-3703.2012.00795.x |
[27] |
Zheng Z, Qamar SA, Chen Z, Mengiste T. 2006. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. The Plant Journal 48:592−605 doi: 10.1111/j.1365-313X.2006.02901.x |
[28] |
Yang Y, Zhou Y, Chi Y, Fan B, Chen Z. 2017. Characterization of soybean WRKY gene family and identification of soybean WRKY genes that promote resistance to soybean cyst nematode. Scientific Reports 7:17804 doi: 10.1038/s41598-017-18235-8 |
[29] |
Dang F, Wang Y, Yu L, Eulgem T, Lai Y, et al. 2013. CaWRKY40, a WRKY protein of pepper, plays an important role in the regulation of tolerance to heat stress and resistance to Ralstonia solanacearum infection. Plant, Cell & Environment 36:757−74 doi: 10.1111/pce.12011 |
[30] |
Wang J, Tao F, Tian W, Guo Z, Chen X, et al. 2017. The wheat WRKY transcription factors TaWRKY49 and TaWRKY62 confer differential high-temperature seedling-plant resistance to Puccinia striiformis f. sp. tritici. PLoS One 12:e0181963 doi: 10.1371/journal.pone.0181963 |
[31] |
Ferreira RB, Monteiro S, Freitas R, Santos CN, Chen Z, et al. 2007. The role of plant defence proteins in fungal pathogenesis. Molecular Plant Pathology 8:677−700 doi: 10.1111/j.1364-3703.2007.00419.x |
[32] |
Rogers EE, Ausubel FM. 1997. Arabidopsis enhanced disease susceptibility mutants exhibit enhanced susceptibility to several bacterial pathogens and alterations in PR-1 gene expression. The Plant Cell 9:305−16 doi: 10.1105/tpc.9.3.305 |
[33] |
Bonasera JM, Kim JF, Beer SV. 2006. PR genes of apple: identification and expression in response to elicitors and inoculation with Erwinia amylovora. BMC Plant Biology 6:23 doi: 10.1186/1471-2229-6-23 |
[34] |
Christensen AB, Cho BH, Næsby M, Gregersen PL, Brandt J, et al. 2002. The molecular characterization of two barley proteins establishes the novel PR-17 family of pathogenesis-related proteins. Molecular Plant Pathology 3:135−44 doi: 10.1046/j.1364-3703.2002.00105.x |
[35] |
Zaynab M, Peng J, Sharif Y, Al-Yahyai R, Jamil A, et al. 2021. Expression profiling of pathogenesis-related Protein-1 (PR-1) genes from Solanum tuberosum reveals its critical role in phytophthora infestans infection. Microbial Pathogenesis 161:105290 doi: 10.1016/j.micpath.2021.105290 |
[36] |
Oide S, Bejai S, Staal J, Guan N, Kaliff M, et al. 2013. A novel role of PR2 in abscisic acid (ABA) mediated, pathogen-induced callose deposition in Arabidopsis thaliana. New Phytologist 200:1187−99 doi: 10.1111/nph.12436 |
[37] |
Zhang Q, Xu C, Wei H, Fan W, Li T. 2021. Two pathogenesis-related proteins interact with leucine-rich repeat proteins to promote Alternaria leaf spot resistance in apple. Horticulture Research 8:219 doi: 10.1038/s41438-021-00654-4 |
[38] |
Zhou Z, Zhu Y, Tian Y, Yao J, Bian S, et al. 2021. MdPR4, a pathogenesis-related protein in apple, is involved in chitin recognition and resistance response to apple replant disease pathogens. Journal of Plant Physiology 260:153390 doi: 10.1016/j.jplph.2021.153390 |
[39] |
Wang W, Nie J, Lv L, Gong W, Wang S, et al. 2021. A Valsa mali effector protein 1 targets apple (Malus domestica) pathogenesis-related 10 protein to promote virulence. Frontiers in Plant Science 12:741342 doi: 10.3389/fpls.2021.741342 |
[40] |
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−08 doi: 10.1006/meth.2001.1262 |
[41] |
Zhang X, Henriques R, Lin SS, Niu QW, Chua NH. 2006. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nature Protocols 1(2):641−46 doi: 10.1038/nprot.2006.97 |
[42] |
Xiang L. 2021. Apple replant disease key factor in old orchards and mechanism of rootstock response to its infection. Thesis. Shandong Agricultural University, China. pp. 51−55 |
[43] |
Xiang L, Zhao L, Wang M, Huang J, Chen X, et al. 2021. Physiological responses of apple rootstock M.9 to infection by Fusarium solani. HortScience 56:1104−11 doi: 10.21273/HORTSCI15945-21 |
[44] |
Chen L, Song Y, Li S, Zhang L, Zou C, et al. 2012. The role of WRKY transcription factors in plant abiotic stresses. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1819:120−28 doi: 10.1016/j.bbagrm.2011.09.002 |
[45] |
Wang A, Wang L, Liu K, Liang K, Yang S, et al. 2022. Comparative transcriptome profiling reveals the defense pathways and mechanisms in the leaves and roots of blueberry to drought stress. Fruit Research 2:18 doi: 10.48130/FruRes-2022-0018 |
[46] |
Li S, Chen H, Yu H, Li Y, Wang L. 2023. Responses and adaptations of fruit trees to high temperatures. Fruit Research 3:23 doi: 10.48130/FruRes-2023-0023 |
[47] |
Liu Z, Ma Z, Li J, Bian N, Guo Z, et al. 2023. Interfering small ubiquitin modifiers (SUMO) exhibits apple's enhanced tolerance to nitrogen deficiency. Fruit Research 3:24 doi: 10.48130/FruRes-2023-0024 |
[48] |
Liu F, Li X, Wang M, Wen J, Yi B, et al. 2018. Interactions of WRKY15 and WRKY33 transcription factors and their roles in the resistance of oilseed rape to Sclerotinia infection. Plant Biotechnology Journal 16:911−25 doi: 10.1111/pbi.12838 |
[49] |
Cheng X, Zhao Y, Jiang Q, Yang J, Zhao W, et al. 2019. Structural basis of dimerization and dual W-box DNA recognition by rice WRKY domain. Nucleic Acids Research 47:4308−18 doi: 10.1093/nar/gkz113 |
[50] |
Eulgem T, Rushton PJ, Robatzek S, Somssich IE. 2000. The WRKY superfamily of plant transcription factors. Trends in Plant Science 5:199−206 doi: 10.1016/S1360-1385(00)01600-9 |
[51] |
Li J, Zhong R, Palva ET. 2017. WRKY70 and its homolog WRKY54 negatively modulate the cell wall-associated defenses to necrotrophic pathogens in Arabidopsis. PLoS One 12:e0183731 doi: 10.1371/journal.pone.0183731 |
[52] |
Chen YL, Lin FW, Cheng KT, Chang CH, Hung SC, et al. 2023. XCP1 cleaves Pathogenesis-related protein 1 into CAPE9 for systemic immunity in Arabidopsis. Nature Communications 14:4697 doi: 10.1038/s41467-023-40406-7 |
[53] |
Luo X, Tian T, Feng L, Yang X, Li L, et al. 2023. Pathogenesis-related protein 1 suppresses oomycete pathogen by targeting against AMPK kinase complex. Journal of Advanced Research 43:13−26 doi: 10.1016/j.jare.2022.02.002 |
[54] |
Kalde M, Nühse TS, Findlay K, Peck SC. 2007. The syntaxin SYP132 contributes to plant resistance against bacteria and secretion of pathogenesis-related protein 1. Proceedings of the National Academy of Sciences of the United States of America 104:11850−55 doi: 10.1073/pnas.0701083104 |
[55] |
Breen S, Williams SJ, Outram M, Kobe B, Solomon PS. 2017. Emerging insights into the functions of pathogenesis-related protein 1. Trends in Plant Science 22:871−79 doi: 10.1016/j.tplants.2017.06.013 |
[56] |
Feki K, Tounsi S, Jemli S, Boubakri H, Saidi MN, et al. 2024. Genome-wide identification of PR10 family members and expression profile analysis of PvPR10 in common bean (Phaseolus vulgaris L.) in response to hormones and several abiotic stress conditions. Plant Growth Regulation 102:279−95 doi: 10.1007/s10725-023-00997-z |
[57] |
Qi J, Song CP, Wang B, Zhou J, Kangasjärvi J, et al. 2018. Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. Journal of Integrative Plant Biology 60:805−26 doi: 10.1111/jipb.12654 |
[58] |
Castro B, Citterico M, Kimura S, Stevens DM, Wrzaczek M, et al. 2021. Stress-induced reactive oxygen species compartmentalization, perception and signalling. Nature Plants 7(4):403−12 doi: 10.1038/s41477-021-00887-0 |
[59] |
Mittler R, Zandalinas SI, Fichman Y, Van Breusegem F. 2022. Reactive oxygen species signalling in plant stress responses. Nature Reviews Molecular Cell Biology 23:663−79 doi: 10.1038/s41580-022-00499-2 |
[60] |
Dat J, Vandenabeele S, Vranová E, Van Montagu M, Inzé D, et al. 2000. Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences CMLS 57:779−95 doi: 10.1007/s000180050041 |
[61] |
Deng Q, Wu J, Chen J, Shen W. 2020. Physiological mechanisms of improved smut resistance in sugarcane through application of silicon. Frontiers in Plant Science 11:568130 doi: 10.3389/fpls.2020.568130 |