[1]
|
Mazzola M, Gu YH. 2000. Impact of wheat cultivation on microbial communities from replant soils and apple growth in greenhouse trials. Phytopathology 90:114−19 doi: 10.1094/PHYTO.2000.90.2.114
CrossRef Google Scholar
|
[2]
|
Somera TS, Mazzola M. 2022. Toward a holistic view of orchard ecosystem dynamics: a comprehensive review of the multiple factors governing development or suppression of apple replant disease. Frontiers in Microbiology 13:949404 doi: 10.3389/fmicb.2022.949404
CrossRef Google Scholar
|
[3]
|
Tewoldemedhin YT, Mazzola M, Labuschagne I, McLeod A. 2011. A multi-phasic approach reveals that apple replant disease is caused by multiple biological agents, with some agents acting synergistically. Soil Biology and Biochemistry 43:1917−27 doi: 10.1016/j.soilbio.2011.05.014
CrossRef Google Scholar
|
[4]
|
Rumberger A, Merwin IA, Thies JE. 2007. Microbial community development in the rhizosphere of apple trees at a replant disease site. Soil Biology and Biochemistry 39:1645−54 doi: 10.1016/j.soilbio.2007.01.023
CrossRef Google Scholar
|
[5]
|
Wang G, Yin C, Pan F, Wang X, Xiang L, et al. 2018. Analysis of the fungal community in apple replanted soil around Bohai Gulf. Horticultural Plant Journal 4:175−81 doi: 10.1016/j.hpj.2018.05.003
CrossRef Google Scholar
|
[6]
|
Liu X, Xu S, Wang X, Xin L, Wang L, et al. 2022. MdBAK1 overexpression in apple enhanced resistance to replant disease as well as to the causative pathogen Fusarium oxysporum. Plant Physiology and Biochemistry 179:144−57 doi: 10.1016/j.plaphy.2022.03.014
CrossRef Google Scholar
|
[7]
|
Yin C, Xiang L, Wang G, Wang Y, Shen X, et al. 2017. Phloridzin promotes the growth of Fusarium moniliforme (Fusarium verticillioides). Scientia Horticulturae 214:187−94 doi: 10.1016/j.scienta.2016.11.035
CrossRef Google Scholar
|
[8]
|
Xiang L, Wang M, Pan F, Wang G, Jiang W, et al. 2021. Transcriptome analysis Malus domestica 'M9T337' root molecular responses to Fusarium solani infection. Physiological and Molecular Plant Pathology 113:101567 doi: 10.1016/j.pmpp.2020.101567
CrossRef Google Scholar
|
[9]
|
Wang H, Zhao L, Jiang W, Zhang R, Chen R, et al. 2021. Effects of Allium fistulosum-Brassica juncea-Triticum aestivum rotation a year on the soil microbial environment and the subsequent growth of young apple trees. Scientia Horticulturae 290:110549 doi: 10.1016/j.scienta.2021.110549
CrossRef Google Scholar
|
[10]
|
Manici LM, Kelderer M, Caputo F, Nicoletti F, De Luca Picione F, et al. 2015. Impact of cover crop in pre-plant of apple orchards: relationship between crop health, root inhabiting fungi and rhizospheric bacteria. Canadian Journal of Plant Science 95:947−58 doi: 10.4141/cjps-2015-013
CrossRef Google Scholar
|
[11]
|
Mazzola M, Hewavitharana SS, Strauss SL. 2015. Brassica seed meal soil amendments transform the rhizosphere microbiome and improve apple production through resistance to pathogen reinfestation. Phytopathology 105:460−69 doi: 10.1094/PHYTO-09-14-0247-R
CrossRef Google Scholar
|
[12]
|
Chen R, Jiang W, Wang H, Pan F, Fan H, et al. 2021. Effects of different fumigants on the replanted soil environment and growth of Malus hupehensis Rehd. seedlings. HortScience 56:491−99 doi: 10.21273/HORTSCI15660-20
CrossRef Google Scholar
|
[13]
|
Jiang W, Chen R, Zhao L, Qin L, Fan H, et al. 2022. Chemical fumigants control apple replant disease: microbial community structure-mediated inhibition of Fusarium and degradation of phenolic acids. Journal of Hazardous Materials 440:129786 doi: 10.1016/j.jhazmat.2022.129786
CrossRef Google Scholar
|
[14]
|
Jones JDG, Dangl JL. 2006. The plant immune system. Nature 444:323−29 doi: 10.1038/nature05286
CrossRef Google Scholar
|
[15]
|
Zasada IA, Halbrendt JM, Kokalis-Burelle N, LaMondia J, McKenry MV, et al. 2010. Managing nematodes without methyl bromide. Annual Review of Phytopathology 48:311−28 doi: 10.1146/annurev-phyto-073009-114425
CrossRef Google Scholar
|
[16]
|
Park MG, Lee BH, Yang JO, Kim BS, Roh GH, et al. 2021. Ethyl formate as a methyl bromide alternative for fumigation of citrus: efficacy, fruit quality, and workplace safety. Journal of Economic Entomology 114(6):2290−96 doi: 10.1093/jee/toab175
CrossRef Google Scholar
|
[17]
|
Martin FN. 2003. Development of alternative strategies for management of soilborne pathogens currently controlled with methyl bromide. Annual Review of Phytopathology 41:325−50 doi: 10.1146/annurev.phyto.41.052002.095514
CrossRef Google Scholar
|
[18]
|
Lahlali R, Ezrari S, Radouane N, Kenfaoui J, Esmaeel Q, et al. 2022. Biological control of plant pathogens: a global perspective. Microorganisms 10:596 doi: 10.3390/microorganisms10030596
CrossRef Google Scholar
|
[19]
|
Jiang W, Chen R, Zhao L, Duan Y, Wang H, et al. 2023. Isolation of phloridzin-degrading, IAA-producing bacterium Ochrobactrum haematophilum and its effects on the apple replant soil environment. Horticultural Plant Journal 9(2):199−208 doi: 10.1016/j.hpj.2022.08.010
CrossRef Google Scholar
|
[20]
|
Hirsch M, Burges PL, Migueliz L, Villarreal NM, Marina M. 2024. Isolation of beneficial bacteria from strawberry (Fragaria × ananassa, Duch). Potentialities for fungal disease control and plant growth promotion. Plant Growth Regulation 102:135−52 doi: 10.1007/s10725-023-00989-z
CrossRef Google Scholar
|
[21]
|
Berendsen RL, Vismans G, Yu K, Song Y, de Jonge R, et al. 2018. Disease-induced assemblage of a plant-beneficial bacterial consortium. The ISME Journal 12:1496−507 doi: 10.1038/s41396-018-0093-1
CrossRef Google Scholar
|
[22]
|
Yang Y, Shah J, Klessig DF. 1997. Signal perception and transduction in plant defense responses. Genes & Development 11:1621−39 doi: 10.1101/gad.11.13.1621
CrossRef Google Scholar
|
[23]
|
Manzoor MA, Xu Y, Lv Z, Xu J, Wang Y, et al. 2023. Fruit crop abiotic stress management: a comprehensive review of plant hormones mediated responses. Fruit Research 3:30 doi: 10.48130/FruRes-2023-0030
CrossRef Google Scholar
|
[24]
|
Wu W, Fu P, Lu J. 2022. Grapevine WRKY transcription factors. Fruit Research 2:10 doi: 10.48130/FruRes-2022-0010
CrossRef Google Scholar
|
[25]
|
Zhang K, Liu F, Wang Z, Zhuo C, Hu K, et al. 2022. Transcription factor WRKY28 curbs WRKY33-mediated resistance to Sclerotinia sclerotiorum in Brassica napus. Plant Physiology 190:2757−74 doi: 10.1093/plphys/kiac439
CrossRef Google Scholar
|
[26]
|
Abbruscato P, Nepusz T, Mizzi L, Del Corvo M, Morandini P, et al. 2012. OsWRKY22, a monocot WRKY gene, plays a role in the resistance response to blast. Molecular Plant Pathology 13:828−41 doi: 10.1111/j.1364-3703.2012.00795.x
CrossRef Google Scholar
|
[27]
|
Zheng Z, Qamar SA, Chen Z, Mengiste T. 2006. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. The Plant Journal 48:592−605 doi: 10.1111/j.1365-313X.2006.02901.x
CrossRef Google Scholar
|
[28]
|
Yang Y, Zhou Y, Chi Y, Fan B, Chen Z. 2017. Characterization of soybean WRKY gene family and identification of soybean WRKY genes that promote resistance to soybean cyst nematode. Scientific Reports 7:17804 doi: 10.1038/s41598-017-18235-8
CrossRef Google Scholar
|
[29]
|
Dang F, Wang Y, Yu L, Eulgem T, Lai Y, et al. 2013. CaWRKY40, a WRKY protein of pepper, plays an important role in the regulation of tolerance to heat stress and resistance to Ralstonia solanacearum infection. Plant, Cell & Environment 36:757−74 doi: 10.1111/pce.12011
CrossRef Google Scholar
|
[30]
|
Wang J, Tao F, Tian W, Guo Z, Chen X, et al. 2017. The wheat WRKY transcription factors TaWRKY49 and TaWRKY62 confer differential high-temperature seedling-plant resistance to Puccinia striiformis f. sp. tritici. PLoS One 12:e0181963 doi: 10.1371/journal.pone.0181963
CrossRef Google Scholar
|
[31]
|
Ferreira RB, Monteiro S, Freitas R, Santos CN, Chen Z, et al. 2007. The role of plant defence proteins in fungal pathogenesis. Molecular Plant Pathology 8:677−700 doi: 10.1111/j.1364-3703.2007.00419.x
CrossRef Google Scholar
|
[32]
|
Rogers EE, Ausubel FM. 1997. Arabidopsis enhanced disease susceptibility mutants exhibit enhanced susceptibility to several bacterial pathogens and alterations in PR-1 gene expression. The Plant Cell 9:305−16 doi: 10.1105/tpc.9.3.305
CrossRef Google Scholar
|
[33]
|
Bonasera JM, Kim JF, Beer SV. 2006. PR genes of apple: identification and expression in response to elicitors and inoculation with Erwinia amylovora. BMC Plant Biology 6:23 doi: 10.1186/1471-2229-6-23
CrossRef Google Scholar
|
[34]
|
Christensen AB, Cho BH, Næsby M, Gregersen PL, Brandt J, et al. 2002. The molecular characterization of two barley proteins establishes the novel PR-17 family of pathogenesis-related proteins. Molecular Plant Pathology 3:135−44 doi: 10.1046/j.1364-3703.2002.00105.x
CrossRef Google Scholar
|
[35]
|
Zaynab M, Peng J, Sharif Y, Al-Yahyai R, Jamil A, et al. 2021. Expression profiling of pathogenesis-related Protein-1 (PR-1) genes from Solanum tuberosum reveals its critical role in phytophthora infestans infection. Microbial Pathogenesis 161:105290 doi: 10.1016/j.micpath.2021.105290
CrossRef Google Scholar
|
[36]
|
Oide S, Bejai S, Staal J, Guan N, Kaliff M, et al. 2013. A novel role of PR2 in abscisic acid (ABA) mediated, pathogen-induced callose deposition in Arabidopsis thaliana. New Phytologist 200:1187−99 doi: 10.1111/nph.12436
CrossRef Google Scholar
|
[37]
|
Zhang Q, Xu C, Wei H, Fan W, Li T. 2021. Two pathogenesis-related proteins interact with leucine-rich repeat proteins to promote Alternaria leaf spot resistance in apple. Horticulture Research 8:219 doi: 10.1038/s41438-021-00654-4
CrossRef Google Scholar
|
[38]
|
Zhou Z, Zhu Y, Tian Y, Yao J, Bian S, et al. 2021. MdPR4, a pathogenesis-related protein in apple, is involved in chitin recognition and resistance response to apple replant disease pathogens. Journal of Plant Physiology 260:153390 doi: 10.1016/j.jplph.2021.153390
CrossRef Google Scholar
|
[39]
|
Wang W, Nie J, Lv L, Gong W, Wang S, et al. 2021. A Valsa mali effector protein 1 targets apple (Malus domestica) pathogenesis-related 10 protein to promote virulence. Frontiers in Plant Science 12:741342 doi: 10.3389/fpls.2021.741342
CrossRef Google Scholar
|
[40]
|
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−08 doi: 10.1006/meth.2001.1262
CrossRef Google Scholar
|
[41]
|
Zhang X, Henriques R, Lin SS, Niu QW, Chua NH. 2006. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nature Protocols 1(2):641−46 doi: 10.1038/nprot.2006.97
CrossRef Google Scholar
|
[42]
|
Xiang L. 2021. Apple replant disease key factor in old orchards and mechanism of rootstock response to its infection. Thesis. Shandong Agricultural University, China. pp. 51−55
|
[43]
|
Xiang L, Zhao L, Wang M, Huang J, Chen X, et al. 2021. Physiological responses of apple rootstock M.9 to infection by Fusarium solani. HortScience 56:1104−11 doi: 10.21273/HORTSCI15945-21
CrossRef Google Scholar
|
[44]
|
Chen L, Song Y, Li S, Zhang L, Zou C, et al. 2012. The role of WRKY transcription factors in plant abiotic stresses. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1819:120−28 doi: 10.1016/j.bbagrm.2011.09.002
CrossRef Google Scholar
|
[45]
|
Wang A, Wang L, Liu K, Liang K, Yang S, et al. 2022. Comparative transcriptome profiling reveals the defense pathways and mechanisms in the leaves and roots of blueberry to drought stress. Fruit Research 2:18 doi: 10.48130/FruRes-2022-0018
CrossRef Google Scholar
|
[46]
|
Li S, Chen H, Yu H, Li Y, Wang L. 2023. Responses and adaptations of fruit trees to high temperatures. Fruit Research 3:23 doi: 10.48130/FruRes-2023-0023
CrossRef Google Scholar
|
[47]
|
Liu Z, Ma Z, Li J, Bian N, Guo Z, et al. 2023. Interfering small ubiquitin modifiers (SUMO) exhibits apple's enhanced tolerance to nitrogen deficiency. Fruit Research 3:24 doi: 10.48130/FruRes-2023-0024
CrossRef Google Scholar
|
[48]
|
Liu F, Li X, Wang M, Wen J, Yi B, et al. 2018. Interactions of WRKY15 and WRKY33 transcription factors and their roles in the resistance of oilseed rape to Sclerotinia infection. Plant Biotechnology Journal 16:911−25 doi: 10.1111/pbi.12838
CrossRef Google Scholar
|
[49]
|
Cheng X, Zhao Y, Jiang Q, Yang J, Zhao W, et al. 2019. Structural basis of dimerization and dual W-box DNA recognition by rice WRKY domain. Nucleic Acids Research 47:4308−18 doi: 10.1093/nar/gkz113
CrossRef Google Scholar
|
[50]
|
Eulgem T, Rushton PJ, Robatzek S, Somssich IE. 2000. The WRKY superfamily of plant transcription factors. Trends in Plant Science 5:199−206 doi: 10.1016/S1360-1385(00)01600-9
CrossRef Google Scholar
|
[51]
|
Li J, Zhong R, Palva ET. 2017. WRKY70 and its homolog WRKY54 negatively modulate the cell wall-associated defenses to necrotrophic pathogens in Arabidopsis. PLoS One 12:e0183731 doi: 10.1371/journal.pone.0183731
CrossRef Google Scholar
|
[52]
|
Chen YL, Lin FW, Cheng KT, Chang CH, Hung SC, et al. 2023. XCP1 cleaves Pathogenesis-related protein 1 into CAPE9 for systemic immunity in Arabidopsis. Nature Communications 14:4697 doi: 10.1038/s41467-023-40406-7
CrossRef Google Scholar
|
[53]
|
Luo X, Tian T, Feng L, Yang X, Li L, et al. 2023. Pathogenesis-related protein 1 suppresses oomycete pathogen by targeting against AMPK kinase complex. Journal of Advanced Research 43:13−26 doi: 10.1016/j.jare.2022.02.002
CrossRef Google Scholar
|
[54]
|
Kalde M, Nühse TS, Findlay K, Peck SC. 2007. The syntaxin SYP132 contributes to plant resistance against bacteria and secretion of pathogenesis-related protein 1. Proceedings of the National Academy of Sciences of the United States of America 104:11850−55 doi: 10.1073/pnas.0701083104
CrossRef Google Scholar
|
[55]
|
Breen S, Williams SJ, Outram M, Kobe B, Solomon PS. 2017. Emerging insights into the functions of pathogenesis-related protein 1. Trends in Plant Science 22:871−79 doi: 10.1016/j.tplants.2017.06.013
CrossRef Google Scholar
|
[56]
|
Feki K, Tounsi S, Jemli S, Boubakri H, Saidi MN, et al. 2024. Genome-wide identification of PR10 family members and expression profile analysis of PvPR10 in common bean (Phaseolus vulgaris L.) in response to hormones and several abiotic stress conditions. Plant Growth Regulation 102:279−95 doi: 10.1007/s10725-023-00997-z
CrossRef Google Scholar
|
[57]
|
Qi J, Song CP, Wang B, Zhou J, Kangasjärvi J, et al. 2018. Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. Journal of Integrative Plant Biology 60:805−26 doi: 10.1111/jipb.12654
CrossRef Google Scholar
|
[58]
|
Castro B, Citterico M, Kimura S, Stevens DM, Wrzaczek M, et al. 2021. Stress-induced reactive oxygen species compartmentalization, perception and signalling. Nature Plants 7(4):403−12 doi: 10.1038/s41477-021-00887-0
CrossRef Google Scholar
|
[59]
|
Mittler R, Zandalinas SI, Fichman Y, Van Breusegem F. 2022. Reactive oxygen species signalling in plant stress responses. Nature Reviews Molecular Cell Biology 23:663−79 doi: 10.1038/s41580-022-00499-2
CrossRef Google Scholar
|
[60]
|
Dat J, Vandenabeele S, Vranová E, Van Montagu M, Inzé D, et al. 2000. Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences CMLS 57:779−95 doi: 10.1007/s000180050041
CrossRef Google Scholar
|
[61]
|
Deng Q, Wu J, Chen J, Shen W. 2020. Physiological mechanisms of improved smut resistance in sugarcane through application of silicon. Frontiers in Plant Science 11:568130 doi: 10.3389/fpls.2020.568130
CrossRef Google Scholar
|