[1]
|
Krenek P, Samajova O, Luptovciak I, Doskocilova A, Komis G, et al. 2015. Transient plant transformation mediated by Agrobacterium tumefaciens: principles, methods and applications. Biotechnology Advances 33(6):1024−42 doi: 10.1016/j.biotechadv.2015.03.012
CrossRef Google Scholar
|
[2]
|
Burnett MJB, Burnett AC. 2020. Therapeutic recombinant protein production in plants: challenges and opportunities. Plants, People, Planet 2(2):121−32 doi: 10.1002/ppp3.10073
CrossRef Google Scholar
|
[3]
|
Tanz SK, Castleden I, Small ID, Millar AH. 2013. Fluorescent protein tagging as a tool to define the subcellular distribution of proteins in plants. Frontiers in Plant Science 4:214 doi: 10.3389/fpls.2013.00214
CrossRef Google Scholar
|
[4]
|
Tyurin AA, Suhorukova AV, Kabardaeva KV, Goldenkova-Pavlova IV. 2020. Transient gene expression is an effective experimental tool for the research into the fine mechanisms of plant gene function: advantages, limitations, and solutions. Plants 9(9):1187 doi: 10.3390/plants9091187
CrossRef Google Scholar
|
[5]
|
Zamani K. 2018. Transient gene expression in plants and its application in molecular farming and functional genomics. Crop Biotechnology 7:65−79
Google Scholar
|
[6]
|
Philips JG, Dudley KJ, Waterhouse PM, Hellens RP. 2019. The rapid methylation of T-DNAs upon Agrobacterium inoculation in plant leaves. Frontiers in Plant Science 10:312 doi: 10.3389/fpls.2019.00312
CrossRef Google Scholar
|
[7]
|
Acanda Y, Welker S, Orbović V, Levy A. 2021. A simple and efficient agroinfiltration method for transient gene expression in Citrus. Plant Cell Reports 40(7):1171−79 doi: 10.1007/s00299-021-02700-w
CrossRef Google Scholar
|
[8]
|
Gong J, Tian Z, Qu X, Meng Q, Guan Y, et al. 2021. Illuminating the cells: transient transformation of citrus to study gene functions and organelle activities related to fruit quality. Horticulture Research 8(1):175 doi: 10.1038/s41438-021-00611-1
CrossRef Google Scholar
|
[9]
|
Gill K, Kumar P, Kumar A, Kapoor B, Sharma R, et al. 2022. Comprehensive mechanistic insights into the citrus genetics, breeding challenges, biotechnological implications, and omics-based interventions. Tree Genetics & Genomes 18(2):9 doi: 10.1007/s11295-022-01544-z
CrossRef Google Scholar
|
[10]
|
Karuppaiya P, Huang J, Zhang M. 2023. Devious phloem intruder Candidatus liberibacter species causing Huanglongbing: history, symptoms, mechanism, and current strategies. In Current and Emerging Challenges in the Diseases of Trees, ed. Bellé C. UK: IntechOpen. doi: 10.5772/intechopen.105089
|
[11]
|
Ma W, Pang Z, Huang X, Xu J, Pandey SS, et al. 2022. Citrus Huanglongbing is a pathogen-triggered immune disease that can be mitigated with antioxidants and gibberellin. Nature Communications 13(1):529 doi: 10.1038/s41467-022-28189-9
CrossRef Google Scholar
|
[12]
|
Lee K, Wang K. 2023. Strategies for genotype-flexible plant transformation. Current Opinion in Biotechnology 79:102848 doi: 10.1016/j.copbio.2022.102848
CrossRef Google Scholar
|
[13]
|
Altpeter F, Springer NM, Bartley LE, Blechl AE, Brutnell TP, et al. 2016. Advancing crop transformation in the era of genome editing. The Plant Cell 28(7):1510−20 doi: 10.1105/tpc.16.00196
CrossRef Google Scholar
|
[14]
|
Kausch AP, Nelson-Vasilchik K, Hague J, Mookkan M, Quemada H, et al. 2019. Edit at will: genotype independent plant transformation in the era of advanced genomics and genome editing. Plant Science 281:186−205 doi: 10.1016/j.plantsci.2019.01.006
CrossRef Google Scholar
|
[15]
|
Maren NA, Duan H, Da K, Yencho GC, Ranney TG, et al. 2022. Genotype-independent plant transformation. Horticulture Research 9:uhac047 doi: 10.1093/hr/uhac047
CrossRef Google Scholar
|
[16]
|
Ghorbel R, La-Malfa S, López MM, Petit A, Navarro L, et al. 2001. Additional copies of virG from pTiBo542 provide a super-transformation ability to Agrobacterium tumefaciens in citrus. Physiological and Molecular Plant Pathology 58(3):103−10 doi: 10.1006/pmpp.2000.0318
CrossRef Google Scholar
|
[17]
|
Wroblewski T, Tomczak A, Michelmore R. 2005. Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnology Journal 3(2):259−73 doi: 10.1111/j.1467-7652.2005.00123.x
CrossRef Google Scholar
|
[18]
|
Wu HY, Liu KH, Wang YC, Wu JF, Chiu WL, et al. 2014. AGROBEST: an efficient Agrobacterium-mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings. Plant Methods 10(1):19 doi: 10.1186/1746-4811-10-19
CrossRef Google Scholar
|
[19]
|
Fujiuchi N, Matoba N, Matsuda R. 2016. Environment control to improve recombinant protein yields in plants based on Agrobacterium-mediated transient gene expression. Frontiers in Bioengineering and Biotechnology 4:23 doi: 10.3389/fbioe.2016.00023
CrossRef Google Scholar
|
[20]
|
Goulin EH, Galdeano DM, Granato LM, Matsumura EE, Dalio RJD, et al. 2019. RNA interference and CRISPR: promising approaches to better understand and control citrus pathogens. Microbiological Research 226:1−9 doi: 10.1016/j.micres.2019.03.006
CrossRef Google Scholar
|
[21]
|
Ishii T, Araki M. 2016. Consumer acceptance of food crops developed by genome editing. Plant Cell Report 35(7):1507−18 doi: 10.1007/s00299-016-1974-2
CrossRef Google Scholar
|
[22]
|
Sandhya D, Jogam P, Allini VR, Abbagani S, Alok A. 2020. The present and potential future methods for delivering CRISPR/Cas9 components in plants. Journal of Genetic Engineering and Biotechnology 18(1):25 doi: 10.1186/s43141-020-00036-8
CrossRef Google Scholar
|
[23]
|
Nguyen TH, Ben Taieb S, Moritaka M, Ran L, Fukuda S. 2023. Public Acceptance of foods derived from genome editing technology: a review of the technical, social and regulatory aspects. Journal of International Food & Agribusiness Marketing 35(4):397−427 doi: 10.1080/08974438.2021.2011526
CrossRef Google Scholar
|
[24]
|
Woo JW, Kim J, Kwon SI, Corvalán C, Cho SW, et al. 2015. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nature Biotechnology 33(11):1162−64 doi: 10.1038/nbt.3389
CrossRef Google Scholar
|
[25]
|
Chen L, Li W, Katin-Grazzini L, Ding J, Gu X, et al. 2018. A method for the production and expedient screening of CRISPR/Cas9-mediated non-transgenic mutant plants. Horticulture Research 5:13 doi: 10.1038/s41438-018-0023-4
CrossRef Google Scholar
|
[26]
|
Salonia F, Ciacciulli A, Poles L, Pappalardo HD, La Malfa S, et al. 2020. New plant breeding techniques in Citrus for the improvement of important agronomic traits. A Review. Frontiers in Plant Science 11:1234 doi: 10.3389/fpls.2020.01234
CrossRef Google Scholar
|
[27]
|
Weeks DP. 2017. Gene editing in polyploid crops: wheat, camelina, canola, potato, cotton, peanut, sugar cane, and citrus. Progress in Molecular Biology and Translational Science 149:65−80 doi: 10.1016/bs.pmbts.2017.05.002
CrossRef Google Scholar
|
[28]
|
Min T, Hwarari D, Li D, Movahedi A, Yang L. 2022. CRISPR-based genome editing and its applications in woody plants. International Journal of Molecular Sciences 23(17):10175 doi: 10.3390/ijms231710175
CrossRef Google Scholar
|
[29]
|
Alquézar B, Bennici S, Carmona L, Gentile A, Peña L. 2022. Generation of transfer-DNA-free base-edited citrus plants. Frontiers in Plant Science 13:835282 doi: 10.3389/fpls.2022.835282
CrossRef Google Scholar
|
[30]
|
Cervera M, Juárez J, Navarro L, Peña L. 2005. Genetic transformation of mature citrus plants. In Transgenic Plants: Methods and Protocols, ed. Peña L. US: Humana Press. Vol 286. pp. 177−87. doi: 10.1385/1-59259-827-7:177
|
[31]
|
Orbović V, Shankar A, Peeples ME, Hubbard C, Zale J. 2015. Citrus transformation using mature tissue explants. In Agrobacterium Protocols, ed. Wang K. New York, NY: Springer. Vol 1224. pp. 259–73. doi: 10.1007/978-1-4939-1658-0_21
|
[32]
|
Canton M, Wu H, Dutt M, Zale J. 2022. A new liquid selection system for mature citrus transformation. Scientia Horticulturae 293:110672 doi: 10.1016/j.scienta.2021.110672
CrossRef Google Scholar
|
[33]
|
Pereira ALA, Carazzolle MF, Abe VY, de Oliveira MLP, Domingues MN, et al. 2014. Identification of putative TAL effector targets of the citrus canker pathogens shows functional convergence underlying disease development and defense response. BMC Genomics 15(1):157 doi: 10.1186/1471-2164-15-157
CrossRef Google Scholar
|
[34]
|
Lewis JD, Knoblauch M, Turgeon R. 2022. The phloem as an arena for plant pathogens. Annual Review of Phytopathology 60:77−96 doi: 10.1146/annurev-phyto-020620-100946
CrossRef Google Scholar
|
[35]
|
Wu H, Acanda Y, Shankar A, Peeples M, Hubbard C, et al. 2015. Genetic transformation of commercially important mature citrus scions. Crop Science 55(6):2786−97 doi: 10.2135/cropsci2015.01.0013
CrossRef Google Scholar
|
[36]
|
Béziat C, Kleine-Vehn J, Feraru E. 2017. Histochemical staining of β-glucuronidase and its spatial quantification. In Plant Hormones, eds Kleine-Vehn J, Sauer M. New York, NY: Humana Press. Vol 1497. pp. 73−80. doi: 10.1007/978-1-4939-6469-7_8
|
[37]
|
Li Y, Tang D, Liu Z, Chen J, Cheng B, et al. 2022. An improved procedure for Agrobacterium-mediated transformation of 'Carrizo' citrange. Plants 11(11):1457 doi: 10.3390/plants11111457
CrossRef Google Scholar
|
[38]
|
Dutt M, Grosser JW. 2009. Evaluation of parameters affecting Agrobacterium-mediated transformation of citrus. Plant Cell, Tissue and Organ Culture (PCTOC) 98(3):331−40 doi: 10.1007/s11240-009-9567-1
CrossRef Google Scholar
|
[39]
|
Zhao H, Jia Y, Cao Y, Wang Y. 2020. Improving T-DNA transfer to Tamarix hispida by adding chemical compounds during Agrobacterium tumefaciens culture. Frontiers in Plant Science 11:501358 doi: 10.3389/fpls.2020.501358
CrossRef Google Scholar
|
[40]
|
Xi J, Patel M, Dong S, Que Q, Qu R. 2018. Acetosyringone treatment duration affects large T-DNA molecule transfer to rice callus. BMC Biotechnology 18(1):48 doi: 10.1186/s12896-018-0459-5
CrossRef Google Scholar
|
[41]
|
Zhao Q, Du Y, Wang H, Rogers HJ, Yu C, et al. 2019. 5-Azacytidine promotes shoot regeneration during Agrobacterium-mediated soybean transformation. Plant Physiology and Biochemistry 141:40−50 doi: 10.1016/j.plaphy.2019.05.014
CrossRef Google Scholar
|
[42]
|
Dan Y, Armstrong CL, Dong J, Feng X, Fry JE, et al. 2009. Lipoic acid—an unique plant transformation enhancer. In Vitro Cellular & Developmental Biology - Plant 45(6):630−38 doi: 10.1007/s11627-009-9227-5
CrossRef Google Scholar
|
[43]
|
Dutt M, Vasconcellos M, Grosser JW. 2011. Effects of antioxidants on Agrobacterium-mediated transformation and accelerated production of transgenic plants of Mexican lime (Citrus aurantifolia Swingle). Plant Cell, Tissue and Organ Culture (PCTOC) 107(1):79−89 doi: 10.1007/s11240-011-9959-x
CrossRef Google Scholar
|
[44]
|
Hasan Nudin NF, van Kronenburg B, Tinnenbroek I, Krens F. 2015. The importance of salicylic acid and an improved plant condition in determining success in Agrobacterium-mediated transformation. Acta Horticulturae 1087:65−69 doi: 10.17660/ActaHortic.2015.1087.7
CrossRef Google Scholar
|
[45]
|
Zhang Y, Ru Y, Shi Z, Wang H, Zhang J, et al. 2023. Effects of different light conditions on transient expression and biomass in Nicotiana benthamiana leaves. Open Life Science 18(1):20220732 doi: 10.1515/biol-2022-0732
CrossRef Google Scholar
|
[46]
|
Sassi M, Ruberti I, Vernoux T, Xu J. 2013. Shedding light on auxin movement: light-regulation of polar auxin transport in the photocontrol of plant development. Plant Signaling & Behavior 8(3):e23355 doi: 10.4161/psb.23355
CrossRef Google Scholar
|
[47]
|
Yokawa K, Koshiba T, Baluška F. 2014. Light-dependent control of redox balance and auxin biosynthesis in plants. Plant Signaling & Behavior 9(6):e29522 doi: 10.4161/psb.29522
CrossRef Google Scholar
|
[48]
|
Lv B, Zhu J, Kong X, Ding Z. 2021. Light participates in the auxin-dependent regulation of plant growth. Journal of Integrative Plant Biology 63(5):819−22 doi: 10.1111/jipb.13036
CrossRef Google Scholar
|
[49]
|
Chen Z, Debernardi JM, Dubcovsky J, Gallavotti A. 2022. Recent advances in crop transformation technologies. Nature Plants 8(12):1343−51 doi: 10.1038/s41477-022-01295-8
CrossRef Google Scholar
|
[50]
|
Huang X, Jia H, Xu J, Wang Y, Wen J, et al. 2023. Transgene-free genome editing of vegetatively propagated and perennial plant species in the T0 generation via a co-editing strategy. Nature Plants 9(10):1591−97 doi: 10.1038/s41477-023-01520-y
CrossRef Google Scholar
|
[51]
|
Jia H, Omar AA, Xu J, Dalmendray J, Wang Y, et al. 2024. Generation of transgene-free canker-resistant Citrus sinensis cv. Hamlin in the T0 generation through Cas12a/CBE co-editing. Frontiers in Plant Science 15:1385768 doi: 10.3389/fpls.2024.1385768
CrossRef Google Scholar
|
[52]
|
Su H, Wang Y, Xu J, Omar AA, Grosser JW, et al. 2023. Generation of the transgene-free canker-resistant Citrus sinensis using Cas12a/crRNA ribonucleoprotein in the T0 generation. Nature Communications 14(1):3957 doi: 10.1038/s41467-023-39714-9
CrossRef Google Scholar
|
[53]
|
Su H, Wang Y, Xu J, Omar AA, Grosser JW, et al. 2024. Cas12a RNP-mediated co-transformation enables transgene-free multiplex genome editing, long deletions, and inversions in citrus chromosome. Frontiers in Plant Science 15:1448807 doi: 10.3389/fpls.2024.1448807
CrossRef Google Scholar
|
[54]
|
Villemont E, Dubois F, Sangwan RS, Vasseur G, Bourgeois Y, et al. 1997. Role of the host cell cycle in the Agrobacterium-mediated genetic transformation of Petunia: evidence of an S-phase control mechanism for T-DNA transfer. Planta 201(2):160−72 doi: 10.1007/BF01007700
CrossRef Google Scholar
|
[55]
|
Li Y, Sun M, Wang X, Zhang YJ, Da XW, et al. 2021. Effects of plant growth regulators on transient expression of foreign gene in Nicotiana benthamiana L. leaves. Bioresources and Bioprocessing 8(1):124 doi: 10.1186/s40643-021-00480-5
CrossRef Google Scholar
|
[56]
|
Gelvin SB. 2006. Agrobacterium virulence gene induction. In Agrobacterium Protocols, ed. Wang K. US: Humana Press. Vol 343. pp. 77–85. doi: 10.1385/1-59745-130-4:77
|
[57]
|
Bhattacharya A, Sood P, Citovsky V. 2010. The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. Molecular Plant Pathology 11(5):705−19 doi: 10.1111/j.1364-3703.2010.00625.x
CrossRef Google Scholar
|
[58]
|
El-Sappah AH, Yan K, Huang Q, Islam MM, Li Q, et al. 2021. Comprehensive mechanism of gene silencing and its role in plant growth and development. Frontiers in Plant Science 12:705249 doi: 10.3389/fpls.2021.705249
CrossRef Google Scholar
|
[59]
|
Sivanandhan G, Kapil Dev G, Theboral J, Selvaraj N, Ganapathi A, et al. 2015. Sonication, vacuum infiltration and thiol compounds enhance the Agrobacterium-mediated transformation frequency of Withania somnifera (L.) Dunal. PLoS One 10(4):e0124693 doi: 10.1371/journal.pone.0124693
CrossRef Google Scholar
|
[60]
|
Desta B, Amare G. 2021. Paclobutrazol as a plant growth regulator. Chemical and Biological Technologies in Agriculture 8:1 doi: 10.1186/s40538-020-00199-z
CrossRef Google Scholar
|
[61]
|
Soumya PR, Kumar P, Pal M. 2017. Paclobutrazol: a novel plant growth regulator and multi-stress ameliorant. Indian Journal of Plant Physiology 22(3):267−78 doi: 10.1007/s40502-017-0316-x
CrossRef Google Scholar
|
[62]
|
Shalaby TA, Taha NA, Taher DI, Metwaly MM, El-Beltagi HS, et al. 2022. Paclobutrazol improves the quality of tomato seedlings to be resistant to Alternaria solani blight disease: biochemical and histological perspectives. Plants 11(3):425 doi: 10.3390/plants11030425
CrossRef Google Scholar
|
[63]
|
Wang X, Traband R, Hiraoka Y, Ferrante SP, Yu L, et al. 2024. Revealing genetic determinants of photosynthesis-related traits in citrus via genome-wide association studies. Fruit Research 4:e020 doi: 10.48130/frures-0024-0013
CrossRef Google Scholar
|
[64]
|
Sun H, Kalluri A, Tang D, Ding J, Zhai L, et al. 2024. Engineered dsRNA–protein nanoparticles for effective systemic gene silencing in plants. Horticulture Research 11:uhae045 doi: 10.1093/hr/uhae045
CrossRef Google Scholar
|
[65]
|
Cui X, Zhang J, Liu Y, Luo X, Deng X, et al. 2022. Comparison of different grafting methods on the effect of 'Candidatus Liberibacter asiaticus' transmission. Fruit Research 2:15 doi: 10.48130/FruRes-2022-0015
CrossRef Google Scholar
|
[66]
|
Neves C, Ribeiro B, Amaro R, Expósito J, Grimplet J, et al. 2023. Network of GRAS transcription factors in plant development, fruit ripening and stress responses. Horticulture Research 10:uhad220 doi: 10.1093/hr/uhad220
CrossRef Google Scholar
|