[1]
|
Monro J, Bentley-Hewitt K, Mishra S. 2018. Kiwifruit exchanges for increased nutrient richness with little effect on carbohydrate intake, glycaemic impact, or insulin response. Nutrients 10:1710 doi: 10.3390/nu10111710
CrossRef Google Scholar
|
[2]
|
Richardson DP, Ansell J, Drummond LN. 2018. The nutritional and health attributes of kiwifruit: a review. European Journal of Nutrition 57:2659−76 doi: 10.1007/s00394-018-1627-z
CrossRef Google Scholar
|
[3]
|
Liu Y, Zhou B, Qi Y, Chen X, Liu C, et al. 2017. Expression differences of pigment structural genes and transcription factors explain flesh coloration in three contrasting kiwifruit cultivars. Frontiers in Plant Science 8:1507 doi: 10.3389/fpls.2017.01507
CrossRef Google Scholar
|
[4]
|
Wang W, Moss SMA, Zeng L, Espley RV, Wang T, et al. 2022. The red flesh of kiwifruit is differentially controlled by specific activation-repression systems. New Phytologist 235:630−45 doi: 10.1111/nph.18122
CrossRef Google Scholar
|
[5]
|
Lemmens L, Colle I, Van Buggenhout S, Palmero P, Van Loey A, et al. 2014. Carotenoid bioaccessibility in fruit- and vegetable-based food products as affected by product (micro)structural characteristics and the presence of lipids: a review. Trends in Food Science & Technology 38:125−35 doi: 10.1016/j.jpgs.2014.05.005
CrossRef Google Scholar
|
[6]
|
Yuan H, Zhang J, Nageswaran D, Li L. 2015. Carotenoid metabolism and regulation in horticultural crops. Horticulture Research 2:15036 doi: 10.1038/hortres.2015.36
CrossRef Google Scholar
|
[7]
|
Grune T, Lietz G, Palou A, Ross AC, Stahl W, et al. 2010. β-Carotene is an important vitamin a source for human. The Journal of Nutrition 140:2268S−2285S doi: 10.3945/jn.109.119024
CrossRef Google Scholar
|
[8]
|
Hermanns AS, Zhou X, Xu Q, Tadmor Y, Li L. 2020. Carotenoid pigment accumulation in horticultural plants. Horticultural Plant Journal 6:343−60 doi: 10.1016/j.hpj.2020.10.002
CrossRef Google Scholar
|
[9]
|
Sun T, Li L. 2020. Toward the 'golden' era: the status in uncovering the regulatory control of carotenoid accumulation in plants. Plant Science 290:110331 doi: 10.1016/j.plantsci.2019.110331
CrossRef Google Scholar
|
[10]
|
da Silva Messias R, Galli V, Dos Anjos e Silva SD, Rombaldi CV. 2014. Carotenoid biosynthetic and catabolic pathways: gene expression and carotenoid content in grains of maize landraces. Nutrients 6:546−63 doi: 10.3390/nu6020546
CrossRef Google Scholar
|
[11]
|
Saini RK, Nile SH, Park SW. 2015. Carotenoids from fruits and vegetables: chemistry, analysis, occurrence, bioavailability and biological activities. Food Research International 76:735−50 doi: 10.1016/j.foodres.2015.07.047
CrossRef Google Scholar
|
[12]
|
Sugiyama K, Ebisawa M, Yamada M, Nagashima Y, Suzuki H, et al. 2017. Functional lycopene cyclase (CruA) in cyanobacterium, Arthrospira platensis NIES-39, and its role in carotenoid synthesis. Plant and Cell Physiology 58:831−38 doi: 10.1093/pcp/pcx015
CrossRef Google Scholar
|
[13]
|
Xiong W, Shen G, Bryant DA. 2017. Synechocystis sp. PCC 6803 CruA (sll0147) encodes lycopene cyclase and requires bound chlorophylla for activity. Photosynthesis Research 131:267−80 doi: 10.1007/s11120-016-0316-0
CrossRef Google Scholar
|
[14]
|
Xia H, Wang X, Zhou Y, Su W, Jiang L, et al. 2021. Biochemical and molecular factors governing flesh-color development in two yellow-fleshed kiwifruit cultivars. Scientia Horticulturae 280:109929 doi: 10.1016/j.scienta.2021.109929
CrossRef Google Scholar
|
[15]
|
Xia H, Wang X, Su W, Jiang L, Lin L, et al. 2020. Changes in the carotenoids profile of two yellow-fleshed kiwifruit cultivars during storage. Postharvest Biology and Technology 164:111162 doi: 10.1016/j.postharvbio.2020.111162
CrossRef Google Scholar
|
[16]
|
Toledo-Ortiz G, Johansson H, Lee KP, Bou-Torrent J, Stewart K, et al. 2014. The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription. PLoS Genetics 10:e1004416 doi: 10.1371/journal.pgen.1004416
CrossRef Google Scholar
|
[17]
|
Zhu F, Luo T, Liu C, Wang Y, Yang H, et al. 2017. An R2R3-MYB transcription factor represses the transformation of α- and β-branch carotenoids by negatively regulating expression of CrBCH2 and CrNCED5 in flavedo of Citrus reticulate. New Phytologist 216:178−92 doi: 10.1111/nph.14684
CrossRef Google Scholar
|
[18]
|
Fu C, Han Y, Kuang J, Chen J, Lu W. 2017. Papaya CpEIN3a and CpNAC2 co-operatively regulate carotenoid biosynthesis-related genes CpPDS2/4, CpLCY-e and CpCHY-b during fruit ripening. Plant and Cell Physiology 58:2155−65 doi: 10.1093/pcp/pcx149
CrossRef Google Scholar
|
[19]
|
Xia H, Lin Z, He Z, Guo Y, Liu X, et al. 2023. AcMADS32 positively regulates carotenoid biosynthesis in kiwifruit by activating AcBCH1/2 expression. International Journal of Biological Macromolecules 242:124928 doi: 10.1016/j.ijbiomac.2023.124928
CrossRef Google Scholar
|
[20]
|
Ampomah-Dwamena C, Thrimawithana AH, Dejnoprat S, Lewis D, Espley RV, et al. 2019. A kiwifruit (Actinidia deliciosa) R2R3-MYB transcription factor modulates chlorophyll and carotenoid accumulation. New Phytologist 221:309−25 doi: 10.1111/nph.15362
CrossRef Google Scholar
|
[21]
|
Yang J, Guo X, Mei Q, Qiu L, Chen P, et al. 2023. MdbHLH4 negatively regulates apple cold tolerance by inhibiting MdCBF1/3 expression and promoting MdCAX3L-2 expression. Plant Physiology 191:789−806 doi: 10.1093/plphys/kiac512
CrossRef Google Scholar
|
[22]
|
Sun Q, He Z, Wei R, Yin Y, Ye J, et al. 2023. Transcription factor CsTT8 promotes fruit coloration by positively regulating the methylerythritol 4-phosphate pathway and carotenoid biosynthesis pathway in citrus (Citrus spp.). Horticulture Research 10:uhad199 doi: 10.1093/hr/uhad199
CrossRef Google Scholar
|
[23]
|
Zhou D, Shen Y, Zhou P, Fatima M, Linz J, et al. 2019. Papaya CpbHLH1/2 regulate carotenoid biosynthesis-related genes during papaya fruit ripening. Horticulture Research 6:80 doi: 10.1038/s41438-019-0162-2
CrossRef Google Scholar
|
[24]
|
Ye D, Liu J, Tian X, Wen X, Zhang Y, et al. 2024. Genome-wide identification of bHLH gene family and screening of candidate gene in response to salt stress in kiwifruit. Environmental and Experimental Botany 222:105774 doi: 10.1016/j.envexpbot.2024.105774
CrossRef Google Scholar
|
[25]
|
Liu Y, Lv G, Yang Y, Ma K, Ren X, et al. 2023. Interaction of AcMADS68 with transcription factors regulates anthocyanin biosynthesis in red-fleshed kiwifruit. Horticulture Research 10:uhac252 doi: 10.1093/hr/uhac252
CrossRef Google Scholar
|
[26]
|
Liu Y, Ma K, Qi Y, Lv G, Ren X, et al. 2021. Transcriptional regulation of anthocyanin synthesis by MYB-bHLH-WDR complexes in kiwifruit (Actinidia chinensis). Journal of Agricultural and Food Chemistry 69:3677−91 doi: 10.1021/acs.jafc.0c07037
CrossRef Google Scholar
|
[27]
|
Bai DF, Li Z, Hu CG, Zhang YJ, Muhammad A, et al. 2021. Transcriptome-wide identification and expression analysis of ERF family genes in Actinidia valvata during waterlogging stress. Scientia Horticulturae 281:109994 doi: 10.1016/j.scienta.2021.109994
CrossRef Google Scholar
|
[28]
|
Bhargava N, Ampomah-Dwamena C, Voogd C, Allan AC. 2023. Comparative transcriptomic and plastid development analysis sheds light on the differential carotenoid accumulation in kiwifruit flesh. Frontiers in Plant Science 14:1213086 doi: 10.3389/fpls.2023.1213086
CrossRef Google Scholar
|
[29]
|
Gan Z, Shan N, Fei L, Wan C, Chen J. 2020. Isolation of the 9-cis-epoxycarotenoid dioxygenase (NCED) gene from kiwifruit and its effects on postharvest softening and ripening. Scientia Horticulturae 261:109020 doi: 10.1016/j.scienta.2019.109020
CrossRef Google Scholar
|
[30]
|
Gan Z, Yuan X, Shan N, Wan C, Chen C, et al. 2021. AcERF1B and AcERF073 positively regulate indole-3-acetic acid degradation by activating AcGH3.1 transcription during postharvest kiwifruit ripening. Journal of Agricultural and Food Chemistry 69:13859−70 doi: 10.1021/acs.jafc.1c03954
CrossRef Google Scholar
|
[31]
|
Havaux M. 2014. Carotenoid oxidation products as stress signals in plants. The Plant Journal 79:597−606 doi: 10.1111/tpj.12386
CrossRef Google Scholar
|
[32]
|
Ampomah-Dwamena C, McGhie T, Wibisono R, Montefiori M, Hellens RP, et al. 2009. The kiwifruit lycopene beta-cyclase plays a significant role in carotenoid accumulation in fruit. Journal of Experimental Botany 60:3765−79 doi: 10.1093/jxb/erp218
CrossRef Google Scholar
|
[33]
|
Montefiori M, McGhie TK, Hallett IC, Costa G. 2009. Changes in pigments and plastid ultrastructure during ripening of green-fleshed and yellow-fleshed kiwifruit. Scientia Horticulturae 119:377−87 doi: 10.1016/j.scienta.2008.08.022
CrossRef Google Scholar
|
[34]
|
Ha SH, Kim JB, Park JS, Lee SW, Cho KJ. 2007. A comparison of the carotenoid accumulation in Capsicum varieties that show different ripening colours: deletion of the capsanthin-capsorubin synthase gene is not a prerequisite for the formation of a yellow pepper. Journal of Experimental Botany 58:3135−44 doi: 10.1093/jxb/erm132
CrossRef Google Scholar
|
[35]
|
Veda S, Platel K, Srinivasan K. 2007. Varietal differences in the bioaccessibility of β-Carotene from mango (Mangifera indica) and papaya (Carica papaya) fruits. Journal of Agricultural and Food Chemistry 55:7931−35 doi: 10.1021/jf0712604
CrossRef Google Scholar
|
[36]
|
Gouado I, Schweigert FJ, Ejeh RA, Tchouanguep MF, Camp JV. 2007. Systemic levels of carotenoids from mangoes and papaya consumed in three forms (juice, fresh and dry slice). European Journal of Clinical Nutrition 61:1180−88 doi: 10.1038/sj.ejcn.1602841
CrossRef Google Scholar
|
[37]
|
Nishiyama I, Fukuda T, Oota T. 2005. Genotypic differences in chlorophyll, lutein, and β-carotene contents in the fruits of Actinidia species. Journal of Agricultural and Food Chemistry 53:6403−07 doi: 10.1021/jf050785y
CrossRef Google Scholar
|
[38]
|
Fraser PD, Truesdale MR, Bird CR, Schuch W, Bramley PM. 1994. Carotenoid biosynthesis during tomato fruit development (evidence for tissue-specific gene expression). Plant Physiology 105:405−13 doi: 10.1104/pp.105.1.405
CrossRef Google Scholar
|
[39]
|
Fu X, Feng C, Wang C, Yin X, Lu P, et al. 2014. Involvement of multiple phytoene synthase genes in tissue- and cultivar-specific accumulation of carotenoids in loquat. Journal of Experimental Botany 65:4679−89 doi: 10.1093/jxb/eru257
CrossRef Google Scholar
|
[40]
|
Karppinen K, Zoratti L, Sarala M, Carvalho E, Hirsimäki J, et al. 2016. Carotenoid metabolism during bilberry (Vaccinium myrtillus L.) fruit development under different light conditions is regulated by biosynthesis and degradation. BMC Plant Biology 16:95 doi: 10.1186/s12870-016-0785-5
CrossRef Google Scholar
|
[41]
|
Wang Y, Zhang Y, Zhang R, Zhuang F, Liu H, et al. 2023. Lycopene ε-cyclase mediated transition of α-carotene and β-carotene metabolic flow in carrot fleshy root. The Plant Journal 115:986−1003 doi: 10.1111/tpj.16275
CrossRef Google Scholar
|
[42]
|
Yuan Y, Ren S, Liu X, Su L, Wu Y, et al. 2022. SlWRKY35 positively regulates carotenoid biosynthesis by activating the MEP pathway in tomato fruit. New Phytologist 234:164−78 doi: 10.1111/nph.17977
CrossRef Google Scholar
|
[43]
|
Zhu M, Chen G, Zhou S, Tu Y, Wang Y, et al. 2014. A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation. Plant and Cell Physiology 55:119−35 doi: 10.1093/pcp/pct162
CrossRef Google Scholar
|
[44]
|
Stanley L, Yuan YW. 2019. Transcriptional regulation of carotenoid biosynthesis in plants: so many regulators, so little consensus. Frontiers in Plant Science 10:1017 doi: 10.3389/fpls.2019.01017
CrossRef Google Scholar
|
[45]
|
Atchley WR, Fitch WM. 1997. A natural classification of the basic helix-loop-helix class of transcription factors. Proceedings of the National Academy of Sciences of the United States of America 94:5172−76 doi: 10.1073/pnas.94.10.5172
CrossRef Google Scholar
|
[46]
|
Zhuge Y, Sheng H, Zhang M, Fang J, Lu S. 2023. Grape phytochrome-interacting factor VvPIF1 negatively regulates carotenoid biosynthesis by repressing VvPSY expression. Plant Science 331:111693 doi: 10.1016/j.plantsci.2023.111693
CrossRef Google Scholar
|
[47]
|
Luo F, Fang H, Zhou Q, Zhou X, Ji S. 2022. Insights into the mechanism of chlorophyll and carotenoid metabolism regulated by BoPIF4 and BobHLH66 in broccoli. Postharvest Biology and Technology 194:112076 doi: 10.1016/j.postharvbio.2022.112076
CrossRef Google Scholar
|