[1]

Govaerts R, Nic Lughadha E, Black N, Turner R, Paton A. 2021. The World Checklist of Vascular Plants, a continuously updated resource for exploring global plant diversity. Scientific Data 8:215

doi: 10.1038/s41597-021-00997-6
[2]

Chang JC, Hsu YH. 2021. Mulberry. In Temperate Fruits: Production, Processing, and Marketing, eds. Mandal D, Wermund U, Phavaphutanon L, Cronje R. New York: Apple Academic Press. pp. 491–535. doi: 10.1201/9781003045861-9

[3]

Jain M, Bansal J, Rajkumar MS, Sharma N, Khurana JP, et al. 2022. Draft genome sequence of Indian mulberry (Morus indica) provides a resource for functional and translational genomics. Genomics 114:110346

doi: 10.1016/j.ygeno.2022.110346
[4]

Dai F, Zhuo X, Luo G, Wang Z, Xu Y, et al. 2023. Genomic resequencing unravels the genetic basis of domestication, expansion, and trait improvement in Morus atropurpurea. Advanced Science 10:e2300039

doi: 10.1002/advs.202300039
[5]

Wang M, Zhu M, Qian J, Yang Z, Shang F, et al. 2024. Phylogenomics of mulberries (Morus, Moraceae) inferred from plastomes and single copy nuclear genes. Molecular Phylogenetics and Evolution 197:108093

doi: 10.1016/j.ympev.2024.108093
[6]

Jiao F, Luo R, Dai X, Liu H, Yu G, et al. 2020. Chromosome-level reference genome and population genomic analysis provide insights into the evolution and improvement of domesticated mulberry (Morus alba). Molecular Plant 13:1001−12

doi: 10.1016/j.molp.2020.05.005
[7]

Xia Z, Dai X, Fan W, Liu C, Zhang M, et al. 2022. Chromosome-level genomes reveal the genetic basis of descending Dysploidy and sex determination in Morus plants. Genomics, Proteomics & Bioinformatics 20:1119−37

doi: 10.1016/j.gpb.2022.08.005
[8]

Kim BS, Kim H, Kang SS. 2019. In vitro anti-bacterial and anti-inflammatory activities of lactic acid bacteria-biotransformed mulberry (Morus alba Linnaeus) fruit extract against Salmonella Typhimurium. Food Control 106:106758

doi: 10.1016/j.foodcont.2019.106758
[9]

Suriyaprom S, Srisai P, Intachaisri V, Kaewkod T, Pekkoh J, et al. 2023. Antioxidant and anti-inflammatory activity on LPS-stimulated RAW 264.7 macrophage cells of white mulberry (Morus alba L.) leaf extracts. Molecules 28:4395

doi: 10.3390/molecules28114395
[10]

Donno D, Mellano MG, Gamba G, Riondato I, Beccaro GL. 2021. Mulberry: an ornamental tree that gives bioactive compounds for human health. Acta Horticulturae 1331:205−14

doi: 10.17660/actahortic.2021.1331.28
[11]

Linnaeus C. 1753. Morus. Species Plantarum 2:968

[12]

Zhao W, Pan Y, Zhang ZF, Jia SH, Miao X, et al. 2005. Phylogeny of the genus Morus (Urticales: Moraceae) inferred from ITS and trnL-F sequences. African Journal of Biotechnology 4:563−69

[13]

Burgess KS, Morgan M, Deverno L, Husband BC. 2005. Asymmetrical introgression between two Morus species (M. alba, M. rubra) that differ in abundance. Molecular Ecology 14:3471−83

doi: 10.1111/j.1365-294X.2005.02670.x
[14]

Burgess KS, Morgan M, Husband BC. 2008. Interspecific seed discounting and the fertility cost of hybridization in an endangered species. New Phytologist 177:276−84

doi: 10.1111/j.1469-8137.2007.02244.x
[15]

Das B, Krishnaswami S. 1965. Some observations on interspecific hybridization in mulberry. Inidan Journal of Sericulture 4:1−8

[16]

Nepal MP, Purintun JM. 2021. Systematics of the genus Morus L. (Moraceae): taxonomy, phylogeny and potential responses to climate change. In Mulberry: Genetic Improvement in Context of Climate Change, eds. Razdan MK, Thomas D. Boca Raton: CRC Press. pp. 2–20. doi: 10.1201/9780429399237-2

[17]

Tani N, Kawahara T, Yoshimaru H, Hoshi Y. 2003. Development of SCAR markers distinguishing pure seedlings of the endangered species Morus boninensis from M. boninensis × M. acidosa hybrids for conservation in Bonin (Ogasawara) Islands. Conservation Genetics 4:605−12

doi: 10.1023/A:1025655331429
[18]

Nepal MP, Ferguson CJ. 2012. Phylogenetics of Morus (Moraceae) inferred from ITS and trnL-trnF sequence data. Systematic Botany 37:442−50

doi: 10.1600/036364412x635485
[19]

Li HT, Yi TS, Gao LM, Ma PF, Zhang T, et al. 2019. Origin of angiosperms and the puzzle of the Jurassic gap. Nature Plants 5:461−70

doi: 10.1038/s41477-019-0421-0
[20]

Daniell H, Jin S, Zhu XG, Gitzendanner MA, Soltis DE, et al. 2021. Green giant—a tiny chloroplast genome with mighty power to produce high-value proteins: history and phylogeny. Plant Biotechnology Journal 19:430−47

doi: 10.1111/pbi.13556
[21]

Liu L, Chen M, Folk RA, Wang M, Zhao T, et al. 2023. Phylogenomic and syntenic data demonstrate complex evolutionary processes in early radiation of the rosids. Molecular Ecology Resources 23:1673−88

doi: 10.1111/1755-0998.13833
[22]

Zuntini AR, Carruthers T, Maurin O, Bailey PC, Leempoel K, et al. 2024. Phylogenomics and the rise of the angiosperms. Nature 629:843−50

doi: 10.1038/s41586-024-07324-0
[23]

Birky CW Jr. 1995. Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution. Proceedings of the National Academy of Sciences 92:11331−38

doi: 10.1073/pnas.92.25.11331
[24]

Zhang X, Li P, Wang J, Fu D, Zhao B, et al. 2024. Comparative genomic and phylogenetic analyses of mitochondrial genomes of hawthorn (Crataegus spp.) in Northeast China. International Journal of Biological Macromolecules 272:132795

doi: 10.1016/j.ijbiomac.2024.132795
[25]

Mower JP, Sloan DB, Alverson AJ. 2012. Plant mitochondrial genome diversity: the genomics revolution. Plant genome diversity: plant genomes, their residents, and their evolutionary dynamics, eds. Wendel J, Greilhuber J, Dolezel J, Leitch I. Volume 1. Vienna: Springer. pp. 123−44. doi: 10.1007/978-3-7091-1130-7_9

[26]

Skippington E, Barkman TJ, Rice DW, Palmer JD. 2015. Miniaturized mitogenome of the parasitic plant Viscum scurruloideum is extremely divergent and dynamic and has lost all nad genes. Proceedings of the National Academy of Sciences of the United States of America 112:E3515−E3524

doi: 10.1073/pnas.1504491112
[27]

Putintseva YA, Bondar EI, Simonov EP, Sharov VV, Oreshkova NV, et al. 2020. Siberian larch (Larix sibirica Ledeb.) mitochondrial genome assembled using both short and long nucleotide sequence reads is currently the largest known mitogenome. BMC Genomics 21:654

doi: 10.1186/s12864-020-07061-4
[28]

Cheng N, Lo YS, Ansari MI, Ho KC, Jeng ST, et al. 2017. Correlation between mtDNA complexity and mtDNA replication mode in developing cotyledon mitochondria during mung bean seed germination. New Phytologist 213:751−63

doi: 10.1111/nph.14158
[29]

Kozik A, Rowan BA, Lavelle D, Berke L, Schranz ME, et al. 2019. The alternative reality of plant mitochondrial DNA: One ring does not rule them all. PLoS Genetics 15:e1008373

doi: 10.1371/journal.pgen.1008373
[30]

Maréchal A, Brisson N. 2010. Recombination and the maintenance of plant organelle genome stability. New Phytologist 186:299−317

doi: 10.1111/j.1469-8137.2010.03195.x
[31]

Jiang L. 2020. Male sterility in maize: A precise dialogue between the mitochondria and nucleus. Molecular Plant 13:1237

doi: 10.1016/j.molp.2020.08.006
[32]

Garcia LE, Edera AA, Palmer JD, Sato H, Sanchez-Puerta MV. 2021. Horizontal gene transfers dominate the functional mitochondrial gene space of a holoparasitic plant. New Phytologist 229:1701−14

doi: 10.1111/nph.16926
[33]

Jin JJ, Yu WB, Yang JB, Song Y, DePamphilis CW, et al. 2020. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biology 21:241

doi: 10.1186/s13059-020-02154-5
[34]

He W, Xiang K, Chen C, Wang J, Wu Z. 2023. Master graph: an essential integrated assembly model for the plant mitogenome based on a graph-based framework. Briefings in Bioinformatics 24(1):bbac522

doi: 10.1093/bib/bbac522
[35]

Bi C, Shen F, Han F, Qu Y, Hou J, et al. 2024. PMAT: an efficient plant mitogenome assembly toolkit using low-coverage HiFi sequencing data. Horticulture Research 11:uhae023

doi: 10.1093/hr/uhae023
[36]

Guo W, Grewe F, Fan W, Young GJ, Knoop V, et al. 2016. Ginkgo and Welwitschia mitogenomes reveal extreme contrasts in gymnosperm mitochondrial evolution. Molecular Biology and Evolution 33:1448−60

doi: 10.1093/molbev/msw024
[37]

Vargas OM, Ortiz EM, Simpson BB. 2017. Conflicting phylogenomic signals reveal a pattern of reticulate evolution in a recent high-Andean diversification (Asteraceae: Astereae: Diplostephium). New Phytologist 214:1736−50

doi: 10.1111/nph.14530
[38]

Liu BB, Ma ZY, Ren C, Hodel RGJ, Sun M, et al. 2021. Capturing single-copy nuclear genes, organellar genomes, and nuclear ribosomal DNA from deep genome skimming data for plant phylogenetics: a case study in Vitaceae. Journal of Systematics and Evolution 59:1124−38

doi: 10.1111/jse.12806
[39]

Liu LX, Deng P, Chen MZ, Yu LM, Lee J, et al. 2023. Systematics of Mukdenia and Oresitrophe (Saxifragaceae): Insights from genome skimming data. Journal of Systematics and Evolution 61:99−114

doi: 10.1111/jse.12833
[40]

Wang J, Kan S, Liao X, Zhou J, Tembrock LR, et al. 2024. Plant organellar genomes: much done, much more to do. Trends in Plant Science 29:754−69

doi: 10.1016/j.tplants.2023.12.014
[41]

Chen Y, Ye W, Zhang Y, Xu Y. 2015. High speed BLASTN: an accelerated MegaBLAST search tool. Nucleic Acids Research 43:7762−68

doi: 10.1093/nar/gkv784
[42]

Wick RR, Schultz MB, Zobel J, Holt KE. 2015. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31:3350−52

doi: 10.1093/bioinformatics/btv383
[43]

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, et al. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647−49

doi: 10.1093/bioinformatics/bts199
[44]

Schattner P, Brooks AN, Lowe TM. 2005. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Research 33:W686−W689

doi: 10.1093/nar/gki366
[45]

Lohse M, Drechsel O, Kahlau S, Bock R. 2013. OrganellarGenomeDRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Research 41:W575−W581

doi: 10.1093/nar/gkt289
[46]

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754−60

doi: 10.1093/bioinformatics/btp324
[47]

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25:2078−79

doi: 10.1093/bioinformatics/btp352
[48]

Milne I, Bayer M, Cardle L, Shaw P, Stephen G, et al. 2010. Tablet—next generation sequence assembly visualization. Bioinformatics 26:401−2

doi: 10.1093/bioinformatics/btp666
[49]

Thorvaldsdóttir H, Robinson JT, Mesirov JP. 2013. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Briefings in Bioinformatics 14:178−92

doi: 10.1093/bib/bbs017
[50]

Zhang D, Gao F, Jakovlić I, Zou H, Zhang J, et al. 2020. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources 20:348−55

doi: 10.1111/1755-0998.13096
[51]

Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J et al. 2001. REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Research 29:4633−42

doi: 10.1093/nar/29.22.4633
[52]

Benson G. 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research 27:573−80

doi: 10.1093/nar/27.2.573
[53]

Beier S, Thiel T, Münch T, Scholz U, Mascher M. 2017. MISA-web: a web server for microsatellite prediction. Bioinformatics 33:2583−85

doi: 10.1093/bioinformatics/btx198
[54]

Zhang H, Meltzer P, Davis S. 2013. RCircos: an R package for Circos 2D track plots. BMC Bioinformatics 14:244

doi: 10.1186/1471-2105-14-244
[55]

Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. 2017. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34:772−73

doi: 10.1093/molbev/msw260
[56]

Stamatakis A, Hoover P, Rougemont J. 2008. A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology 57:758−71

doi: 10.1080/10635150802429642
[57]

Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572−74

doi: 10.1093/bioinformatics/btg180
[58]

Davila JI, Arrieta-Montiel MP, Wamboldt Y, Cao J, Hagmann J, et al. 2011. Double-strand break repair processes drive evolution of the mitochondrial genome in Arabidopsis. BMC Biology 9:64

doi: 10.1186/1741-7007-9-64
[59]

Cole LW, Guo W, Mower JP, Palmer JD. 2018. High and variable rates of repeat-mediated mitochondrial genome rearrangement in a genus of plants. Molecular Biology and Evolution 35:2773−85

doi: 10.1093/molbev/msy176
[60]

Odahara M, Nakamura K, Sekine Y, Oshima T. 2021. Ultra-deep sequencing reveals dramatic alteration of organellar genomes in Physcomitrella patens due to biased asymmetric recombination. Communications Biology 4:633

doi: 10.1038/s42003-021-02141-x
[61]

Wang S, Li D, Yao X, Song Q, Wang Z, et al. 2019. Evolution and diversification of kiwifruit mitogenomes through extensive whole-genome rearrangement and mosaic loss of intergenic sequences in a highly variable region. Genome Biology and Evolution 11:1192−206

doi: 10.1093/gbe/evz063
[62]

Ogihara Y, Yamazaki Y, Murai K, Kanno A, Terachi T, et al. 2005. Structural dynamics of cereal mitochondrial genomes as revealed by complete nucleotide sequencing of the wheat mitochondrial genome. Nucleic Acids Research 33:6235−50

doi: 10.1093/nar/gki925
[63]

Sloan DB, Alverson AJ, Chuckalovcak JP, Wu M, McCauley DE, et al. 2012. Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates. PLoS Biology 10:e1001241

doi: 10.1371/journal.pbio.1001241
[64]

Li J, Li J, Ma Y, Kou L, Wei J, et al. 2022. The complete mitochondrial genome of okra (Abelmoschus esculentus): using nanopore long reads to investigate gene transfer from chloroplast genomes and rearrangements of mitochondrial DNA molecules. BMC Genomics 23:481

doi: 10.1186/s12864-022-08706-2
[65]

Lai C, Wang J, Kan S, Zhang S, Li P, et al. 2022. Comparative analysis of mitochondrial genomes of Broussonetia spp. (Moraceae) reveals heterogeneity in structure, synteny, intercellular gene transfer, and RNA editing. Frontiers in Plant Science 13:1052151

doi: 10.3389/fpls.2022.1052151
[66]

Wei L, Zheng T, Xiang J, Cheng J, Wu J. 2023. Assembly and analysis of the first complete mitochondrial genome of Ficus carica Linn. Journal of the American Society for Horticultural Science 148:283−91

doi: 10.21273/jashs05328-23
[67]

Palmer JD, Adams KL, Cho Y, Parkinson CL, Qiu YL, et al. 2000. Dynamic evolution of plant mitochondrial genomes: mobile genes and introns and highly variable mutation rates. Proceedings of the National Academy of Sciences of the United States of America 97:6960−66

doi: 10.1073/pnas.97.13.6960
[68]

Park S, Grewe F, Zhu A, Ruhlman TA, Sabir J, et al. 2015. Dynamic evolution of Geranium mitochondrial genomes through multiple horizontal and intracellular gene transfers. New Phytologist 208:570−83

doi: 10.1111/nph.13467
[69]

Yang Z, Ni Y, Lin Z, Yang L, Chen G, et al. 2022. De novo assembly of the complete mitochondrial genome of sweet potato (Ipomoea batatas [L.] Lam) revealed the existence of homologous conformations generated by the repeat-mediated recombination. BMC Plant Biology 22:285

doi: 10.1186/s12870-022-03665-y
[70]

Yang M, Zhang S, Li B, Yang Y, Lan Y, et al. 2024. Comprehensive analysis of the mitochondrial genome of Ziziphus mauritiana Lam.: Investigating sequence structure, repeat-mediated recombination, chloroplast-derived transfer, RNA editing, and evolution. Scientia Horticulturae 324:112637

doi: 10.1016/j.scienta.2023.112637
[71]

Straub SCK, Parks M, Weitemier K, Fishbein M, Cronn RC, et al. 2012. Navigating the tip of the genomic iceberg: Next-generation sequencing for plant systematics. American Journal of Botany 99:349−64

doi: 10.3732/ajb.1100335
[72]

Emms DM, Kelly S. 2015. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biology 16:157

doi: 10.1186/s13059-015-0721-2
[73]

Johnson MG, Gardner EM, Liu Y, Medina R, Goffinet B, et al. 2016. HybPiper: Extracting coding sequence and introns for phylogenetics from high-throughput sequencing reads using target enrichment. Applications in Plant Sciences 4:1600016

doi: 10.3732/apps.1600016
[74]

Dierckxsens N, Mardulyn P, Smits G. 2017. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Research 45:e18

doi: 10.1093/nar/gkw955
[75]

Li HT, Luo Y, Gan L, Ma PF, Gao LM, et al. 2021. Plastid phylogenomic insights into relationships of all flowering plant families. BMC Biology 19:232

doi: 10.1186/s12915-021-01166-2
[76]

Hu H, Sun P, Yang Y, Ma J, Liu J. 2023. Genome-scale angiosperm phylogenies based on nuclear, plastome, and mitochondrial datasets. Journal of Integrative Plant Biology 65:1479−89

doi: 10.1111/jipb.13455
[77]

Wolfe KH, Li WH, Sharp PM. 1987. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proceedings of the National Academy of Sciences of the United States of America 84:9054−58

doi: 10.1073/pnas.84.24.9054
[78]

Rice DW, Alverson AJ, Richardson AO, Young GJ, Sanchez-Puerta MV, et al. 2013. Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm Amborella. Science 342:1468−73

doi: 10.1126/science.1246275
[79]

Potter D, Eriksson T, Evans RC, Oh S, Smedmark JEE, et al. 2007. Phylogeny and classification of Rosaceae. Plant Systematics and Evolution 266:5−43

doi: 10.1007/s00606-007-0539-9
[80]

Xiang Y, Huang CH, Hu Y, Wen J, Li S, et al. 2017. Evolution of rosaceae fruit types based on nuclear phylogeny in the context of geological times and genome duplication. Molecular Biology & Evolution 34:262−81

doi: 10.1093/molbev/msw242
[81]

Chen ZD, Yang T, Lin L, Lu LM, Li HL, et al. 2016. Tree of life for the genera of Chinese vascular plants. Journal of Systematics and Evolution 54:277−306

doi: 10.1111/jse.12219
[82]

Sun M, Naeem R, Su JX, Cao ZY, Burleigh JG, et al. 2016. Phylogeny of the Rosidae: A dense taxon sampling analysis. Journal of Systematics and Evolution 54:363−91

doi: 10.1111/jse.12211
[83]

Shi C, Han K, Li L, Seim I, Lee SMY, et al. 2020. Complete chloroplast genomes of 14 mangroves: phylogenetic and comparative genomic analyses. BioMed Research International 2020:8731857

doi: 10.1155/2020/8731857
[84]

xxx. 2019. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574:679−685

doi: 10.1038/s41586-019-1693-2
[85]

Mogensen HL. 1996. INVITED SPECIAL PAPER: the hows and whys of cytoplasmic inheritance in seed plants. American Journal of Botany 83:383−404

doi: 10.1002/j.1537-2197.1996.tb12718.x
[86]

Birky CW Jr . 2001. The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, and models. Annual Review of Genetics 35:125−48

doi: 10.1146/annurev.genet.35.102401.090231
[87]

Havey MJ, McCreight JD, Rhodes B, Taurick G. 1998. Differential transmission of the Cucumis organellar genomes. Theoretical and Applied Genetics 97:122−28

doi: 10.1007/s001220050875
[88]

Yang TW, Yang YA, Xiong Z. 2000. Paternal inheritance of chloroplast DNA in interspecific hybrids in the genus Larrea (Zygophyllaceae). American Journal of Botany 87:1452−58

doi: 10.2307/2656871
[89]

Shore JS, McQueen KL, Little SH. 1994. Inheritance of plastid DNA in the Turnera ulmifolia complex (Turneraceae). American Journal of Botany 81:1636−39

doi: 10.1002/j.1537-2197.1994.tb11476.x
[90]

Masoud SA, Johnson LB, Sorensen EL. 1990. High transmission of paternal plastid DNA in alfalfa plants demonstrated by restriction fragment polymorphic analysis. Theoretical and Applied Genetics 79:49−55

doi: 10.1007/BF00223786