[1]

Allali SA, Abed M, Mebarki A. 2018. Post-earthquake assessment of buildings damage using fuzzy logic. Engineering Structures 166:117−27

doi: 10.1016/j.engstruct.2018.03.055
[2]

Boukri M, Farsi MN, Mebarki A, Belazougui M. 2013. Development of an integrated approach for Algerian building seismic damage assessment. Structural Engineering and Mechanics 47(4):471−93

doi: 10.12989/sem.2013.47.4.471
[3]

Boukri M, Farsi MN, Mebarki A, Belazougui M, Amellal O, et al. 2014. Seismic risk and damage prediction: case of the buildings in Constantine city (Algeria). Bulletin of Earthquake Engineering 12(6):2683−704

doi: 10.1007/s10518-014-9594-0
[4]

Boukri M, Farsi MN, Mebarki A, Belazougui M, Ait-Belkacem M, et al. 2018. Seismic vulnerability assessment at urban scale: case of Algerian buildings. International Journal of Disaster Risk Reduction 31:555−75

doi: 10.1016/j.ijdrr.2018.06.014
[5]

Mebarki A, Laribi A. 2008. Post-seismic evaluation of strucutral damages: probabilistic methodology. In Risques Naturels et technologiques, eds. Mebarki A, Genatios C, Lafuente M. Paris: Presses de l'Ecole Nationale des Ponts et Chaussées. pp. 155−72

[6]

Mebarki A, Boukri M, Laribi A, Farsi M, Belazougui M, et al. 2014. Seismic vulnerability: theory and application to Algerian buildings. Journal of Seismology 18(2):331−43

doi: 10.1007/s10950-013-9377-0
[7]

Noura H, Mebarki A, Abed M. 2019. Post-quake structural damage evaluation by neural networks: theory and calibration. European Journal of Environmental and Civil Engineering 23:710−27

doi: 10.1080/19648189.2017.1304277
[8]

Zucconi M, Romano F, Ferracuti B. 2022. Typological fragility curves for RC buildings: Influence of damage index and building sample selection. Engineering Structures 266:114627

doi: 10.1016/j.engstruct.2022.114627
[9]

Derbal I, Bourahla N, Mebarki A, Bahar R. 2020. Neural network-based prediction of ground time history responses. European Journal of Environmental and Civil engineering 24:123−40

doi: 10.1080/19648189.2017.1367727
[10]

Muecklich N, Sikora I, Paraskevas A, Padhra A. 2023. Safety and reliability in aviation – a systematic scoping review of normal accident theory, high-reliability theory, and resilience engineering in aviation. Safety Science 162:106097

doi: 10.1016/j.ssci.2023.106097
[11]

Naghshbandi SN, Varga L, Hu Y. 2021. Technologies for safe and resilient earthmoving operations: A systematic literature review. Automation in Construction 125:103632

doi: 10.1016/j.autcon.2021.103632
[12]

Ellis LA, Churruca K, Clay-Williams R, Pomare C, Austin EE, et al. 2019. Patterns of resilience: a scoping review and bibliometric analysis of resilient health care. Safety Science 118:241−57

doi: 10.1016/j.ssci.2019.04.044
[13]

Pilanawithana NM, Feng Y, London K, Zhang P. 2022. Developing resilience for safety management systems in building repair and maintenance: A conceptual model. Safety Science 152:105768

doi: 10.1016/j.ssci.2022.105768
[14]

Yang Z, Barroca B, Mebarki A, Laffréchine K, Dolidon H, et al. 2024. A guide of indicators creation for critical infrastructures resilience. Based on a multi-criteria framework focusing on optimisation actions for road transport system. Natural Hazards and Earth System Sciences 24:3723−53

doi: 10.5194/egusphere-2024-204
[15]

Asadi E, Salman AM, Li Y. 2019. Multi-criteria decision-making for seismic resilience and sustainability assessment of diagrid buildings. Engineering Structures 191:229−46

doi: 10.1016/j.engstruct.2019.04.049
[16]

Mebarki A, Valencia N, Salagnac JL, Barroca B. 2012. Flood hazards and masonry constructions: A probabilistic framework for damage, risk and resilience at urban scale. Natural Hazards and Earth System Sciences 12(5):1799−809

doi: 10.5194/nhess-12-1799-2012
[17]

Mebarki A, Jerez S, Prodhomme G, Reimeringer M. 2016. Natural hazards, vulnerability and structural resilience: Tsunamis and industrial tanks. Geomatics, Natural Hazards and Risk 7:5−17

doi: 10.1080/19475705.2016.1181458
[18]

Mebarki A. 2017. Resilience: theory and metrics – a metal structure as demonstrator. Engineering Structures 138:425−33

doi: 10.1016/j.engstruct.2017.02.026
[19]

Mebarki A. 2017. Safety of atmospheric industrial tanks: Fragility, resilience and recovery functions. Journal of Loss Prevention in the Process Industries 49:590−602

doi: 10.1016/j.jlp.2017.06.007
[20]

Halahla AM, Abu Tahnat YB, Almasri AH, Voyiadjis GZ. 2019. The effect of shape memory alloys on the ductility of exterior reinforced concrete beam-column joints using the damage plasticity model. Engineering Structures 200:109676

doi: 10.1016/j.engstruct.2019.109676
[21]

Freeseman K, Khazanovich L, Hoegh K, Nojavan A, Schultz AE, et al. 2016. Nondestructive monitoring of subsurface damage progression in concrete columns damaged by earthquake loading. Engineering Structures 114:148−57

doi: 10.1016/j.engstruct.2016.02.017
[22]

Park YJ, Ang AHS. 1985. Mechanistic seismic damage model for reinforced concrete. Journal of Structural Engineering 111(4):722−39

doi: 10.1061/(ASCE)0733-9445(1985)111:4(722)
[23]

Chikh B, Mebarki A, Laouami N, Leblouba M, Mehani Y, et al. 2017. Seismic structural demands and inelastic deformation ratios: A theoretical approach. Earthquakes and Structures 12(4):397−407

doi: 10.12989/eas.2017.12.4.397
[24]

Chikh B, Laouami N, Mebarki A, Leblouba M, Mehani Y, et al. 2017. Seismic structural demands and inelastic deformation ratios: sensitivity analysis and simplified models. Earthquakes and Structures 13(1):59−66

doi: 10.12989/eas.2017.13.1.059
[25]

Besson J, Cailletaud G, Chaboche JL, Forest F. 2001. Mécanique non linéaire des matériaux. Paris, France: Hermes Sciences Publications. 446 pp.

[26]

Kachanov LM. 1986. Introduction to continuum damage mechanics. Dordrecht, Netherlands: Springer. 135 pp. doi: 10.1007/978-94-017-1957-5

[27]

Mazumder RK, Salman AM. 2019. Seismic damage assessment using RADIUS and GIS: a case study of Sylhet City, Bangladesh. International Journal of Disaster Risk Reduction 34:243−54

doi: 10.1016/j.ijdrr.2018.11.023
[28]

Jeong SH, Elnashai AS. 2006. New three-dimensional damage index for RC buildings with planar irregularities. Journal of Structural Engineering 132(9):1482−90

doi: 10.1061/(ASCE)0733-9445(2006)132:9(1482)
[29]

Colombo A, Negro P. 2005. A damage index of generalised applicability. Engineering Structures 27(8):1164−74

doi: 10.1016/j.engstruct.2005.02.014
[30]

DiPasquale E, Cakmak AS. 1990. Detection of seismic structural damage using parameter-based global damage indices. Probabilistic Engineering Mechanics 5(2):60−65

doi: 10.1016/0266-8920(90)90008-8
[31]

Nielsen SRK, Köylüoǧlu HU, Çalmak AŞ. 1992. One and two-dimensional maximum softening damage indicators for reinforced concrete structures under seismic excitation. Soil Dynamics and Earthquake Engineering 11(8):435−43

doi: 10.1016/0267-7261(92)90007-Z
[32]

Simoen E, Lombaert G, Reynders E, Roeck G. 2010. Uncertainty quantification in the vibration-based damage assessment of a reinforced concrete beam. ISMA2010 International Conference on Noise and Vibration Engineering paper. Leuven, Belgium. pp. 4979−92. https://past.isma-isaac.be/downloads/isma2010/papers/isma2010_0371.pdf

[33]

Kappos AJ, Stylianidis KC, Pitilakis K. 1998. Development of seismic risk scenarios based on a hybrid method of vulnerability assessment. Natural Hazards 17(2):177−92

doi: 10.1023/A:1008083021022
[34]

Bessason B, Bjarnason JÖ, Rupakhety R. 2020. Statistical modelling of seismic vulnerability of RC, timber and masonry buildings from complete empirical loss data. Engineering Structures 209:109969

doi: 10.1016/j.engstruct.2019.109969
[35]

Mergos PE, Kappos AJ. 2010. Seismic damage analysis including inelastic shear–flexure interaction. Bulletin of Earthquake Engineering 8(1):27−46

doi: 10.1007/s10518-009-9161-2
[36]

Chai YH. 1999. Characterization of story-level seismic damage using an energy-based damage model. Experimental Mechanics 39(1):53−61

doi: 10.1007/BF02329301
[37]

Ang AHS. 1988. Seismic damage assessment and basis for damage-limiting design. Probabilistic Engineering Mechanics 3(3):146−50

doi: 10.1016/0266-8920(88)90026-4
[38]

Hanganu AD, Oñate E, Barbat AH. 2002. A finite element methodology for local/global damage evaluation in civil engineering structures. Computers & Structures 80(20-21):1667−87

doi: 10.1016/s0045-7949(02)00012-3
[39]

Scotta R, Tesser L, Vitaliani R, Saetta A. 2009. Global damage indexes for the seismic performance assessement of RC structures. Earthquake Engineering & Structural Dynamics 38(8):1027−49

doi: 10.1002/eqe.882
[40]

Bracci JM, Reinhorn AM, Mander JB, Kunnath SKK. 1989. Deterministic Model for Seismic Damage Evaluation of Reinforced Concrete Structures. Technical Report NCEER-89-0033. National Center For Earthquake Engineering Research (NCEER). www.eng.buffalo.edu/mceer-reports/89/89-0033.pdf

[41]

Morfidis K, Kostinakis K. 2018. Approaches to the rapid seismic damage prediction of r/c buildings using artificial neural networks. Engineering Structures 165:120−41

doi: 10.1016/j.engstruct.2018.03.028
[42]

Norris CH, Wilbur JB. 1948. Elementary Structural Analysis. JaiGyan, India: digitallibraryindia. 829 pp.

[43]

Bazán E, Meli R. 2002. Diseño sísmico de edificios. Mexico: Editorial Limusa S. A. de C. V. https://ivandamianvega.wordpress.com/wp-content/uploads/2016/03/arquilibros-manual-de-diseno-sismico-de-edificios.pdf

[44]

Chopra AK. 2001. Dynamics of Structures: Theory and Applications to Earthquake Engineering. USA: Pearson Prentice Hall. 829 pp.

[45]

Pinto A, Verzeletti G, Molina J, Varum H, Pinho R, et al. 2002. Pseudo-dynamic tests on non-seismic resisting RC frames (bare and selective retrofit). https://publications.jrc.ec.europa.eu/repository/handle/JRC23144

[46]

Benbokhari A, Chikh B, Mebarki A. 2024. Seismic response prediction using a hybrid unsupervised and supervised machine learning in case of 3D RC frame buildings. Research on Engineering Structures and Materials 10(4):1373−97

doi: 10.17515/resm2024.137me1229rs
[47]

Benbokhari A, Chikh B, Mebarki A. 2024. Dynamic response estimation of an equivalent single degree of freedom system using artificial neural network and nonlinear static procedure. Research on Engineering Structures and Materials 10:431−44

doi: 10.17515/resm2023.40me0818rs
[48]

Boukri M, Farsi M, Mebarki A. 2023. Rapid earthquake loss estimation model for Algerian urban heritage: case of Blida city. International Journal of Architectural Heritage 17(4):635−60

doi: 10.1080/15583058.2021.1958394
[49]

Smail T, Abed M, Mebarki A, Lazecky M. 2022. Earthquake-induced landslide monitoring and survey by means of InSAR. Natural Hazards and Earth System Sciences 22(5):1609−25

doi: 10.5194/nhess-22-1609-2022