[1]

Bai Y, Cotrufo MF. 2022. Grassland soil carbon sequestration: current understanding, challenges, and solutions. Science 377:603−08

doi: 10.1126/science.abo2380
[2]

Buisson E, Archibald S, Fidelis A, Suding KN. 2022. Ancient grasslands guide ambitious goals in grassland restoration. Science 377:594−98

doi: 10.1126/science.abo4605
[3]

da Silveira Pontes L, Maire V, Schellberg J, Louault F. 2015. Grass strategies and grassland community responses to environmental drivers: a review. Agronomy for Sustainable Development 35:1297−318

doi: 10.1007/s13593-015-0314-1
[4]

Blair J, Nippert J, Briggs J. 2014. Grassland Ecology. In Ecology and the Environment, ed. Monson R. New York, NY: Springer. Vol 8. pp. 389–423. doi: 10.1007/978-1-4614-7501-9_14

[5]

Shoko C, Mutanga O, Dube T. 2016. Progress in the remote sensing of C3 and C4 grass species aboveground biomass over time and space. ISPRS Journal of Photogrammetry and Remote Sensing 120:13−24

doi: 10.1016/j.isprsjprs.2016.08.001
[6]

Salt DE. 2023. GMO or non-GMO? That is the question. New Phytologist 237:7−8

doi: 10.1111/nph.18399
[7]

Ul Haq SI, Zheng D, Feng N, Jiang X, Qiao F, et al. 2022. Progresses of CRISPR/Cas9 genome editing in forage crops. Journal of Plant Physiology 279:153860

doi: 10.1016/j.jplph.2022.153860
[8]

Bao Q, Wolabu TW, Zhang Q, Zhang T, Liu Z, et al. 2022. Application of CRISPR/Cas9 technology in forages. Grassland Research 1:244−51

doi: 10.1002/glr2.12036
[9]

Wang ZY, Bell J, Cheng X, Ge Y, Han KJ, et al. Biotechnological improvement of forage cops. In Biotechnology and Sustainable Agriculture 2006 and Beyond, eds Xu Z, Li J, Xue Y, Yang W. Dordrecht: Springer. pp. 333–38. doi: 10.1007/978-1-4020-6635-1_53

[10]

Chen S. 2024. Advances in molecular breeding of forage crops: technologies, applications and prospects. Agriculture 14:279

doi: 10.3390/agriculture14020279
[11]

McSteen P, Kellogg EA. 2022. Molecular, cellular, and developmental foundations of grass diversity. Science 377:599−602

doi: 10.1126/science.abo5035
[12]

Bouton JH. 2007. Molecular breeding of switchgrass for use as a biofuel crop. Current Opinion in Genetics & Development 17:553−58

doi: 10.1016/j.gde.2007.08.012
[13]

Zhang B, Ren C. 2022. Advances in oat genomic research and molecular breeding. Chinese Bulletin of Botany 57:785−91

doi: 10.11983/CBB22182
[14]

Liu X, Zhao H, Li X, Zhang Y. 2020. Research advance on applications of molecular markers and genomes in perennial ryegrass. Molecular Plant Breeding 18:473−81

doi: 10.13271/j.mpb.018.000473
[15]

Tan W, Chen J, Cai H. 2022. Recent progress in biology of genus Lolium. Chinese Bulletin of Botany 57:802−13

doi: 10.11983/CBB22161
[16]

Maughan PJ, Lee R, Walstead R, Vickerstaff RJ, Fogarty MC, et al. 2019. Genomic insights from the first chromosome-scale assemblies of oat (Avena spp. ) diploid species. BMC Biology 17:92

doi: 10.1186/s12915-019-0712-y
[17]

Peng Y, Yan H, Guo L, Deng C, Wang C, et al. 2022. Reference genome assemblies reveal the origin and evolution of allohexaploid oat. Nature Genetics 54:1248−58

doi: 10.1038/s41588-022-01127-7
[18]

Byrne SL, Nagy I, Pfeifer M, Armstead I, Swain S, et al. 2015. A synteny-based draft genome sequence of the forage grass Lolium perenne. The Plant Journal 84:816−26

doi: 10.1111/tpj.13037
[19]

Knorst V, Yates S, Byrne S, Asp T, Widmer F, et al. 2019. First assembly of the gene-space of Lolium multiflorum and comparison to other Poaceae genomes. Grassland Science 65:125−34

doi: 10.1111/grs.12225
[20]

Frei D, Veekman E, Grogg D, Stoffel-Studer I, Morishima A, et al. 2021. Ultralong oxford nanopore reads enable the development of a reference-grade perennial ryegrass genome assembly. Genome Biology and Evolution 13:evab159

doi: 10.1093/gbe/evab159
[21]

Copetti D, Sa Y, Mm V, Russo G, Grieder C, et al. 2021. Evidence for high intergenic sequence variation in heterozygous Italian ryegrass (Lolium multiflorum Lam.) genome revealed by a high-quality draft diploid genome assembly. bioRxiv

doi: 10.1101/2021.05.05.442707
[22]

Nagy I, Veeckman E, Liu C, Van Bel M, Vandepoele K, et al. 2022. Chromosome-scale assembly and annotation of the perennial ryegrass genome. BMC Genomics 23:505

doi: 10.1186/s12864-022-08697-0
[23]

Li T, Tang S, Li W, Zhang S, Wang J, et al. 2023. Genome evolution and initial breeding of the Triticeae grass Leymus chinensis dominating the Eurasian Steppe. Proceedings of the National Academy of Sciences of the United States of America 120:e2308984120

doi: 10.1073/pnas.2308984120
[24]

Sun M, Huang S, Zhou Y. 2024. Enhancing sheepgrass through genomic exploration and targeted editing. Science China Life Sciences 67:629−30

doi: 10.1007/s11427-023-2505-0
[25]

Sharma MK, Sharma R, Cao P, Jenkins J, Bartley LE, et al. 2012. A genome-wide survey of switchgrass genome structure and organization. PLoS One 7:e33892

doi: 10.1371/journal.pone.0033892
[26]

Lovell JT, MacQueen AH, Mamidi S, Bonnette J, Jenkins J, et al. 2021. Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. Nature 590:438−44

doi: 10.1038/s41586-020-03127-1
[27]

Nageswara-Rao M, Soneji JR, Kwit C, Stewart CN, Jr. 2013. Advances in biotechnology and genomics of switchgrass. Biotechnology for Biofuels 6:77

doi: 10.1186/1754-6834-6-77
[28]

Cary TJ, Rylott EL, Zhang L, Routsong RM, Palazzo AJ, et al. 2021. Field trial demonstrating phytoremediation of the military explosive RDX by XplA/XplB-expressing switchgrass. Nature Biotechnology 39:1216−19

doi: 10.1038/s41587-021-00909-4
[29]

Yang R, Liu W, Sun Y, Sun Z, Wu Z, et al. 2022. LATERAL BRANCHING OXIDOREDUCTASE, one novel target gene of Squamosa Promoter Binding Protein-like 2, regulates tillering in switchgrass. New Phytologist 235:563−75

doi: 10.1111/nph.18140
[30]

Han X, Tang S, Ma X, Liu W, Yang R, et al. 2024. Blocking miR528 function promotes tillering and regrowth in switchgrass. Plant Biotechnology Journal 22:712−21

doi: 10.1111/pbi.14218
[31]

Yang R, Wu Z, Sun Y, Liu Y, Hang Y, et al. 2024. miR156-PvSPL2 controls culm development by transcriptional repression of switchgrass CYTOKININ OXIDASE/DEHYDROGENASE4. The Plant Journal 118:2055−67

doi: 10.1111/tpj.16728
[32]

Ng PC, Kirkness EF. 2010. Whole genome sequencing. In Genetic Variation, eds Barnes M, Breen G. Vol 628. Totowa, NJ: Humana Press. pp. 215–26. doi: 10.1007/978-1-60327-367-1_12

[33]

Jaškūnė K, Aleliūnas A, Statkevičiūtė G, Kemešytė V, Studer B, et al. 2020. Genome-wide association study to identify candidate loci for biomass formation under water deficit in perennial ryegrass. Frontiers in Plant Science 11:570204

doi: 10.3389/fpls.2020.570204
[34]

Huber J, Westermeier P, Mohler V, Willner E, Hartmann S. 2021. Genetic analysis of drought stress tolerance in perennial ryegrass (Lolium perenne L.). Proceedings of the 2021 Meeting of the Fodder Crops and Amenity Grasses Section of EUCARPIA. September 6-8, 2021. Freising, Bavaria, Germany. Olomouc: Univerzita Palackého v Olomouci. pp. 63−66. doi: 10.5507/vup.21.24459677.15

[35]

Zimmer C, Oliveira G, Antunes K, Pacheco M, Federizzi L. 2022. Genome-wide association mapping for heading date in oats under subtropical environments. Scientia Agricola 79:e20200355

doi: 10.1590/1678-992X-2020-0355
[36]

Taylor M, Tornqvist CE, Zhao X, Grabowski P, Doerge R, et al. 2018. Genome-wide association study in Pseudo-F2 populations of switchgrass identifies genetic loci affecting heading and anthesis dates. Frontiers in Plant Science 9:1250

doi: 10.3389/fpls.2018.01250
[37]

Niu L, Fu C, Lin H, Wolabu TW, Wu Y, et al. 2016. Control of floral transition in the bioenergy crop switchgrass. Plant, Cell & Environment 39:2158−71

doi: 10.1111/pce.12769
[38]

Wu B, Hu Y, Huo P, Zhang Q, Chen X, et al. 2017. Transcriptome analysis of hexaploid hulless oat in response to salinity stress. PLoS One 12:e0171451

doi: 10.1371/journal.pone.0171451
[39]

Sun Y, Wang F, Wang N, Dong Y, Liu Q, et al. 2013. Transcriptome exploration in Leymus chinensis under saline-alkaline treatment using 454 pyrosequencing. PLoS One 8:e53632

doi: 10.1371/journal.pone.0053632
[40]

Su K, Wu Z, Liu Y, Wang Y, Wang H, et al. 2024. UDP-glycosyltransferase UGT96C10 functions as a novel detoxification factor for conjugating the activated dinitrotoluene sulfonate in switchgrass. Plant Biotechnology Journal 22:2530−40

doi: 10.1111/pbi.14366
[41]

Dattgonde N, Tiwari S, Sapre S, Gontia-Mishra I. 2019. Genetic transformation of oat mediated by Agrobacterium is enhanced with sonication and vacuum infiltration. Iranian Journal of Biotechnology 17:e1563

doi: 10.21859/ijb.1563
[42]

Esmaeili S, Salehi H, Khosh-Khui M, Niazi A, Tohidfar M, et al. 2019. Isopentenyl transferase (IPT) gene transfer to perennial ryegrass through sonication-assisted Agrobacterium-mediated transformation (SAAT), vacuum and heat treatment. Molecular Biotechnology 61:332−44

doi: 10.1007/s12033-019-00165-7
[43]

Lin Z, Chen L, Tang S, Zhao M, Li T, et al. 2023. Efficient CRISPR/Cas9-mediated genome editing in sheepgrass (Leymus chinensis). Journal of Integrative Plant Biology 65:2416−20

doi: 10.1111/jipb.13567
[44]

Liu Y, Cen H, Yan J, Zhang Y, Zhang W. 2015. Inside out: high-efficiency plant regeneration and Agrobacterium-mediated transformation of upland and lowland switchgrass cultivars. Plant Cell Reports 34:1099−108

doi: 10.1007/s00299-015-1769-x
[45]

Sun YL, Hong SK. 2012. Agrobacterium tumefaciens-mediated transformation of the halophyte Leymus chinensis (Trin.). Plant Molecular Biology Reporter 30:1253−63

doi: 10.1007/s11105-012-0434-6
[46]

Xu N, Kang M, Zobrist JD, Wang K, Fei SZ. 2021. Genetic transformation of recalcitrant upland switchgrass using morphogenic genes. Frontiers in Plant Science 12:781565

doi: 10.3389/fpls.2021.781565
[47]

Zhang L, Liu L, Sun Y, Zhang J, Cui L. 2015. Study on transformation system of oat trauma embryo with Agrobacterium mediated method. Journal of Hebei Agricultural Sciences 19:49−54,76

doi: 10.16318/j.cnki.hbnykx.2015.03.011
[48]

Ozyigit, II, Yucebilgili Kurtoglu K. 2020. Particle bombardment technology and its applications in plants. Molecular Biology Reports 47:9831−47

doi: 10.1007/s11033-020-06001-5
[49]

Dunbar T, Tsakirpaloglou N, Septiningsih EM, Thomson MJ. 2022. Carbon nanotube-mediated plasmid DNA delivery in rice leaves and seeds. International Journal of Molecular Sciences 23:4081

doi: 10.3390/ijms23084081
[50]

Demirer GS, Zhang H, Matos JL, Goh NS, Cunningham FJ, et al. 2019. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nature Nanotechnology 14:456−64

doi: 10.1038/s41565-019-0382-5
[51]

Wang Z, Zhang Z, Zheng D, Zhang T, Li X, et al. 2022. Efficient and genotype independent maize transformation using pollen transfected by DNA-coated magnetic nanoparticles. Journal of Integrative Plant Biology 64:1145−56

doi: 10.1111/jipb.13263
[52]

Zhang W, Dewey RE, Boss W, Phillippy BQ, Qu R. 2013. Enhanced Agrobacterium-mediated transformation efficiencies in monocot cells is associated with attenuated defense responses. Plant Molecular Biology 81:273−86

doi: 10.1007/s11103-012-9997-8
[53]

Zhang Y, Ran Y, Nagy I, Lenk I, Qiu JL, et al. 2020. Targeted mutagenesis in ryegrass (Lolium spp. ) using the CRISPR/Cas9 system. Plant Biotechnology Journal 18:1854−56

doi: 10.1111/pbi.13359
[54]

Grogg D, Rohner M, Yates S, Manzanares C, Bull SE, et al. 2022. Callus induction from diverse explants and genotypes enables robust transformation of perennial ryegrass (Lolium perenne L.). Plants 11:2054

doi: 10.3390/plants11152054
[55]

Ondzighi-Assoume CA, Willis JD, Ouma WK, Allen SM, King Z, et al. 2019. Embryogenic cell suspensions for high-capacity genetic transformation and regeneration of switchgrass (Panicum virgatum L.). Biotechnology for Biofuels 12:290

doi: 10.1186/s13068-019-1632-3
[56]

Raman V, Rojas CM, Vasudevan B, Dunning K, Kolape J, et al. 2022. Agrobacterium expressing a type III secretion system delivers Pseudomonas effectors into plant cells to enhance transformation. Nature Communications 13:2581

doi: 10.1038/s41467-022-30180-3
[57]

Fu C, Sunkar R, Zhou C, Shen H, Zhang JY, et al. 2012. Overexpression of miR156 in switchgrass (Panicum virgatum L.) results in various morphological alterations and leads to improved biomass production. Plant Biotechnology Journal 10:443−52

doi: 10.1111/j.1467-7652.2011.00677.x
[58]

Xu J, Schubert J, Altpeter F. 2001. Dissection of RNA-mediated ryegrass mosaic virus resistance in fertile transgenic perennial ryegrass (Lolium perenne L.). The Plant Journal 26:265−74

doi: 10.1046/j.1365-313X.2001.01025.x
[59]

Bhalla PL, Swoboda I, Singh MB. 1999. Antisense-mediated silencing of a gene encoding a major ryegrass pollen allergen. Proceedings of the National Academy of Sciences of the United States of America 96:11676−80

doi: 10.1073/pnas.96.20.11676
[60]

Baxter HL, Mazarei M, Labbe N, Kline LM, Cheng Q, et al. 2014. Two-year field analysis of reduced recalcitrance transgenic switchgrass. Plant Biotechnology Journal 12:914−24

doi: 10.1111/pbi.12195
[61]

Fu C, Mielenz JR, Xiao X, Ge Y, Hamilton CY, et al. 2011. Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proceedings of the National Academy of Sciences of the United States of America 108:3803−08

doi: 10.1073/pnas.1100310108
[62]

Cen H, Ye W, Liu Y, Li D, Wang K, et al. 2016. Overexpression of a chimeric gene, OsDST-SRDX, improved salt tolerance of perennial ryegrass. Scientific Reports 6:27320

doi: 10.1038/srep27320
[63]

Wu Z, Cao Y, Yang R, Qi T, Hang Y, et al. 2016. Switchgrass SBP-box transcription factors PvSPL1 and 2 function redundantly to initiate side tillers and affect biomass yield of energy crop. Biotechnology for Biofuels 9:101

doi: 10.1186/s13068-016-0516-z
[64]

Zulfiqar S, Farooq MA, Zhao T, Wang P, Tabusam J, et al. 2023. Virus-induced gene silencing (VIGS): a powerful tool for crop improvement and its advancement towards epigenetics. International Journal of Molecular Sciences 24:5608

doi: 10.3390/ijms24065608
[65]

Tiedge K, Destremps J, Solano-Sanchez J, Arce-Rodriguez ML, Zerbe P. 2022. Foxtail mosaic virus-induced gene silencing (VIGS) in switchgrass (Panicum virgatum L.). Plant Methods 18:71

doi: 10.1186/s13007-022-00903-0
[66]

Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, et al. 2014. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology 32:947−51

doi: 10.1038/nbt.2969
[67]

Ran Y, Liang Z, Gao C. 2017. Current and future editing reagent delivery systems for plant genome editing. Science China Life Sciences 60:490−505

doi: 10.1007/s11427-017-9022-1
[68]

Chen K, Wang Y, Zhang R, Zhang H, Gao C. 2019. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annual Review of Plant Biology 70:667−97

doi: 10.1146/annurev-arplant-050718-100049
[69]

Yu D, Wang F, Rong X, Wu Z, Wang X, et al. 2019. Editing of acetyl-CoA carboxylase (ACCase) gene in oat by CRISPR/Cas9. Molecular Plant Breeding 17:6356−62

[70]

Park JJ, Yoo CG, Flanagan A, Pu Y, Debnath S, et al. 2017. Defined tetra-allelic gene disruption of the 4-coumarate: coenzyme A ligase 1 (Pv4CL1) gene by CRISPR/Cas9 in switchgrass results in lignin reduction and improved sugar release. Biotechnology for Biofuels 10:284

doi: 10.1186/s13068-017-0972-0
[71]

Bouton JH. 2023. Forage breeding and cultivar development: a 50-year perspective. Grassland Research 2:97−105

doi: 10.1002/glr2.12050
[72]

Yan H, Sun M, Zhang Z, Jin Y, Zhang A, et al. 2023. Pangenomic analysis identifies structural variation associated with heat tolerance in pearl millet. Nature Genetics 55:507−18

doi: 10.1038/s41588-023-01302-4
[73]

Brummer EC, Wang ZY. 2020. Biotechnology and molecular approaches to forage improvement. In Forages: The Science of Grassland Agriculture, II, 7th edition, eds Moore KJ, Collins M, Nelson CJ, Redfearn DD. US: John Wiley & Sons Ltd. pp. 567–79. doi: 10.1002/9781119436669.ch31