[1]

Iqbal S, Xu J, Gui H, Bu D, Alharbi SA, et al. 2024. Interactive effects of microplastics and typical pollutants on the soil-plant system: a mini-review. Circular Agricultural Systems 4:e007

doi: 10.48130/cas-0024-0008
[2]

Hu Y, Wang J, Yang Y, Li S, Wu Q, et al. 2024. Revolutionizing soil heavy metal remediation: cutting-edge innovations in plant disposal technology. Science of The Total Environment 918:170577

doi: 10.1016/j.scitotenv.2024.17057
[3]

Lin H, Wang Z, Liu C, Dong Y. 2022. Technologies for removing heavy metal from contaminated soils on farmland: a review. Chemosphere 305:135457

doi: 10.1016/j.chemosphere.2022.135457
[4]

Hashem A, Abd Allah EF, Alqarawi AA, Al Huqail AA, Egamberdieva D, et al. 2016. Alleviation of cadmium stress in Solanum lycopersicum L. by arbuscular mycorrhizal fungi via induction of acquired systemic tolerance. Saudi Journal of Biological Sciences 23(2):272−81

doi: 10.1016/j.sjbs.2015.11.002
[5]

Amna, Ali N, Masood S, Mukhtar T, Kamran MA, et al. 2015. Differential effects of cadmium and chromium on growth, photosynthetic activity, and metal uptake of Linum usitatissimum in association with Glomus intraradices. Environmental monitoring and assessment 187:311

doi: 10.1007/s10661-015-4557-8
[6]

Tauqeer HM, Ali S, Rizwan M, Ali Q, Saeed R, et al. 2016. Phytoremediation of heavy metals by Alternanthera bettzickiana: growth and physiological response. Ecotoxicology and Environmental Safety 126:138−46

doi: 10.1016/j.ecoenv.2015.12.031
[7]

Buendía-González L, Orozco-Villafuerte J, Cruz-Sosa F, Barrera-Díaz CE, Vernon-Carter EJ. 2010. Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant. Bioresource Technology 101(15):5862−67

doi: 10.1016/j.biortech.2010.03.027
[8]

Liu L, Li W, Song W, Guo M. 2018. Remediation techniques for heavy metal-contaminated soils: principles and applicability. Science of the Total Environment 633:206−19

doi: 10.1016/j.scitotenv.2018.03.161
[9]

Manoj SR, Karthik C, Kadirvelu K, Arulselvi PI, Shanmugasundaram T, et al. 2020. Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: A review. Journal of Environmental Management 254:109779

doi: 10.1016/j.jenvman.2019.109779
[10]

Luo Y, Zhang Y, Xiong Z, Chen X, Sha A, et al. 2024. Peptides used for heavy metal remediation: a promising approach. International Journal of Molecular Sciences 25(12):6717

doi: 10.3390/ijms25126717
[11]

Xiao CW, Luo XY, Tian Y, Lu XY. 2013. Research progress of bioremediation of heavy metal cadmium pollution. Chemistry & Bioengineering 30:1−4

[12]

Sarwar N, Imran M, Shaheen MR, Ishaque W, Kamran MA, et al. 2017. Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710−21

doi: 10.1016/j.chemosphere.2016.12.11
[13]

Adiloğlu S, Adiloğlu A, Açıkgöz FE, Yeniaras T, Solmaz Y. 2016. Phytoremediation of cadmium from soil using patience dock (Rumex patientia L.). Analytical Letters 49(4):601−6

doi: 10.1080/00032719.2015.1075132
[14]

Bokhari SH, Ahmad I, Mahmood-Ul-Hassan M, Mohammad A. 2016. Phytoremediation potential of Lemna minor L. for heavy metals. International Journal of Phytoremediation 18(1):25−32

doi: 10.1080/15226514.2015.1058331
[15]

Li JT, Gurajala HK, Wu LH, van der Ent A, Qiu RL, et al. 2018. Hyperaccumulator plants from China: a synthesis of the current state of knowledge. Environmental Science & Technology 52(21):11980−94

doi: 10.1021/acs.est.8b01060
[16]

Medina-Díaz HL, López-Bellido FJ, Alonso-Azcárate J, Fernández-Morales FJ, Rodríguez L. 2024. A new hyperaccumulator plant (Spergularia rubra) for the decontamination of mine tailings through electrokinetic-assisted phytoextraction. Science of the Total Environment 912:169543

doi: 10.1016/j.scitotenv.2023.169543
[17]

Huang R, Wu Z, Zhao X, Li F, Wang W, et al. 2022. Pfaffia glomerata is a hyperaccumulator candidate: Cd and Zn tolerance, absorption, transfer, and distribution. Ecotoxicology and Environmental Safety 246:114196

doi: 10.1016/j.ecoenv.2022.114196
[18]

He QX. 2013. Research progress of screening cadmium hyperaccumulators. Environmental Protection and Circular Economy 33:46−49

[19]

Yang J, Huang Y, Zhao G, Li B, Qin X, et al. 2022. Phytoremediation potential evaluation of three rhubarb species and comparative analysis of their rhizosphere characteristics in a Cd- and Pb-contaminated soil. Chemosphere 296:134045

doi: 10.1016/j.chemosphere.2022.134045
[20]

Li X, Chen D, Li B, Yang Y. 2021. Cd accumulation characteristics of Salvia tiliifolia and changes of rhizospheric soil enzyme activities and bacterial communities under a Cd concentration gradient. Plant and Soil 463:225−47

doi: 10.1007/s11104-021-04905-0
[21]

Li X, Li B, Zheng Y, Luo L, Qin X, et al. 2022. Physiological and rhizospheric response characteristics to cadmium of a newly identified cadmium accumulator Coreopsis grandiflora Hogg. (Asteraceae). Ecotoxicology and Environmental Safety 241:113739

doi: 10.1016/j.ecoenv.2022.113739
[22]

Liao Y, Jiang X, Xiao Y, Li M. 2020. Exposure of microalgae Euglena gracilis to polystyrene microbeads and cadmium: perspective from the physiological and transcriptional responses. Aquatic Toxicology 228:105650

doi: 10.1016/j.aquatox.2020.105650
[23]

Li X, Zhang X, Li B, Wu Y, Sun H, et al. 2017. Cadmium phytoremediation potential of turnip compared with three common high Cd-accumulating plants. Environmental Science and Pollution Research 24:21660−70

doi: 10.1007/s11356-017-9781-z
[24]

Fadzil FNM, Mohamad MAN, Repin R, Harumain ZAS. 2024. Metal uptake and tolerance in hyperaccumulator plants: Advancing phytomining strategies. Rhizosphere 29:100836

doi: 10.1016/j.rhisph.2023.100836
[25]

Hu P, Yin YG, Ishikawa S, Suzui N, Kawachi N, et al. 2013. Nitrate facilitates cadmium uptake, transport and accumulation in the hyperaccumulator Sedum plumbizincicola. Environmental Science and Pollution Research 20:6306−16

doi: 10.1007/s11356-013-1680-3
[26]

Tang L, Yao A, Yuan M, Tang Y, Liu J, et al. 2016. Transcriptional up-regulation of genes involved in photosynthesis of the Zn/Cd hyperaccumulator Sedum alfredii in response to zinc and cadmium. Chemosphere 164:190−200

doi: 10.1016/j.chemosphere.2016.08.026
[27]

Liu H, Zhao H, Wu L, Liu A, Zhao FJ, et al. 2017. Heavy metal ATPase 3 (HMA3) confers cadmium hypertolerance on the cadmium/zinc hyperaccumulator Sedum plumbizincicola. New Phytologist 215(2):687−98

doi: 10.1111/nph.14622
[28]

Qiu W, Song X, Han X, Liu M, Qiao G, et al. 2018. Overexpression of Sedum alfredii cinnamyl alcohol dehydrogenase increases the tolerance and accumulation of cadmium in Arabidopsis. Environmental and Experimental Botany 155:566−77

doi: 10.1016/j.envexpbot.2018.08.003
[29]

Zhao H, Wang L, Zhao FJ, Wu L, Liu A, et al. 2019. SpHMA1 is a chloroplast cadmium exporter protecting photochemical reactions in the Cd hyperaccumulator Sedum plumbizincicola. Plant, Cell & Environment 42(4):1112−24

doi: 10.1111/pce.13456
[30]

Wu B, Shao B, Zhao H, Wang X, Lei M. 2017. Cd accumulation and tolerance characteristics of 11 species in Sedum sensu lato. Acta Scientiae Circumstantiae 37(5):1947−56

doi: 10.13671/j.hjkxxb.2016.0339
[31]

Guo JM, Lei M, Yang JX, Yang J, Wan XM, et al. 2017. Effect of fertilizers on the Cd uptake of two sedum species (Sedum spectabile Boreau and Sedum aizoon L.) as potential Cd accumulators. Ecological Engineering 106:409−14

doi: 10.1016/j.ecoleng.2017.04.069
[32]

Nedaee Ziabari SZ, Sedaghathoor S, Kaviani B, Baniasad M. 2024. Phytoremediation ability of three succulent ornamental plants; cactus (Opuntia humifusa), kalanchoe (Kalanchoe blossfeldiana) and bryophyllum (Bryophyllum delagoensis) under heavy metals pollution. Science of the Total Environment 947:174579

doi: 10.1016/j.scitotenv.2024.174579
[33]

Zhou Q, Guo JJ, He CT, Shen C, Huang YY, et al. 2016. Comparative transcriptome analysis between low- and high-cadmium-accumulating genotypes of pakchoi (Brassica chinensis L.) in response to cadmium stress. Environmental Science & Technology 50(12):6485−94

doi: 10.1021/acs.est.5b06326
[34]

Yu SJ, Gao SF, Qu YM, Chen YH, Wang G. 2014. Toxicity and its threshold of cadmium to tomato roots in different soils. Journal of Agro-Environment Science 33:640−46

[35]

Jin C, Wei X, Yang S, Yao L, Gong G. 2017. Microwave-assisted extraction and antioxidant activity of flavonoids from Sedum aizoon leaves. Food Science and Technology Research 23(1):111−18

doi: 10.3136/fstr.23.111
[36]

Choppala G, Saifullah, Bolan N, Bibi S, Iqbal M, et al. 2014. Cellular mechanisms in higher plants governing tolerance to cadmium toxicity. Critical Reviews in Plant Sciences 33(5):374−91

doi: 10.1080/07352689.2014.903747
[37]

Ahmad Anjum S, Tanveer M, Hussain S, Shahzad B, Ashraf U, et al. 2016. Osmoregulation and antioxidant production in maize under combined cadmium and arsenic stress. Environmental Science and Pollution Research 23:11864−75

doi: 10.1007/s11356-016-6382-1
[38]

Hasanuzzaman M, Nahar K, Gill SS, Alharby HF, Razafindrabe BHN, et al. 2017. Hydrogen peroxide pretreatment mitigates cadmium-induced oxidative stress in Brassica napus L.: an intrinsic study on antioxidant defense and glyoxalase systems. Frontiers in Plant Science 8:115

doi: 10.3389/fpls.2017.00115
[39]

Mansoor S, Ali A, Kour N, Bornhorst J, Alharbi K, et al. 2023. Heavy metal induced oxidative stress mitigation and ROS scavenging in plants. Plants 12(16):3003

doi: 10.3390/plants12163003
[40]

Song L, Wang J, Shafi M, Liu Y, Wang J, et al. 2016. Hypobaric treatment effects on chilling injury, mitochondrial dysfunction, and the ascorbate–glutathione (AsA-GSH) cycle in postharvest peach fruit. Journal of Agricultural and Food Chemistry 64(22):4665−74

doi: 10.1021/acs.jafc.6b00623
[41]

Møller IM. 2001. Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annual Review of Plant Biology 52(1):561−91

doi: 10.1146/annurev.arplant.52.1.561
[42]

Zhang J, Zhang M, Shohag MJI, Tian M, Song H, et al. 2016. Enhanced expression of SaHMA3 plays critical roles in Cd hyperaccumulation and hypertolerance in Cd hyperaccumulator Sedum alfredii Hance. Planta 243(3):577−89

doi: 10.1007/s00425-015-2429-7
[43]

Liu H, Zhao H, Wu L, Xu W. 2017. A genetic transformation method for cadmium hyperaccumulator Sedum plumbizincicola and non-hyperaccumulating ecotype of Sedum alfredii. Frontiers in Plant Science 8:1047

doi: 10.3389/fpls.2017.01047
[44]

Peng JS, Wang YJ, Ding G, Ma HL, Zhang YJ, et al. 2017. A pivotal role of cell wall in cadmium accumulation in the Crassulaceae hyperaccumulator Sedum plumbizincicola. Molecular Plant 10(5):771−74

doi: 10.1016/j.molp.2016.12.007
[45]

Chang S, Shu H. 2015. The inhibition analysis of two heavy metal ATPase genes (NtHMA3a and NtHMA3b) in Nicotiana tabacum. Bioremediation Journal 19(2):113−23

doi: 10.1080/10889868.2014.995372
[46]

Shao JF, Xia J, Yamaji N, Shen RF, Ma JF. 2018. Effective reduction of cadmium accumulation in rice grain by expressing OsHMA3 under the control of the OsHMA2 promoter. Journal of Experimental Botany 69(10):2743−52

doi: 10.1093/jxb/ery107
[47]

Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, et al. 2016. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicology and Environmental Safety 126:111−21

doi: 10.1016/j.ecoenv.2015.12.023