[1]

Johnson R, Vishwakarma K, Hossen MS, Kumar V, Shackira AM, et al. 2022. Potassium in plants: growth regulation, signaling, and environmental stress tolerance. Plant Physiology and Biochemistry 172:56−69

doi: 10.1016/j.plaphy.2022.01.001
[2]

Srivastava AK, Shankar A, Nalini Chandran AK, Sharma M, Jung KH, et al. 2020. Emerging concepts of potassium homeostasis in plants. Journal of Experimental Botany 71:608−19

doi: 10.1093/jxb/erz458
[3]

Santos EF, Mateus NS, Rosário MO, Garcez TB, Mazzafera P, et al. 2021. Enhancing potassium content in leaves and stems improves drought tolerance of eucalyptus clones. Physiologia Plantarum 172:552−63

doi: 10.1111/ppl.13228
[4]

Sardans J, Peñuelas J. 2015. Potassium: a neglected nutrient in global change. Global Ecology and Biogeography 24:261−75

doi: 10.1111/geb.12259
[5]

Gessler A, Schaub M, McDowell NG. 2017. The role of nutrients in drought-induced tree mortality and recovery. New Phytologist 214:513−20

doi: 10.1111/nph.14340
[6]

Sardans J, Peñuelas J. 2021. Potassium control of plant functions: ecological and agricultural implications. Plants 10:419

doi: 10.3390/plants10020419
[7]

Jaiswal DK, Verma JP, Prakash S, Meena VS, Meena RS. 2016. Potassium as an important plant nutrient in sustainable agriculture: a state of the art. In Potassium Solubilizing Microorganisms for Sustainable Agriculture, ed. Meena VS, Maurya BR, Verma JP, Meena RS. New Delhi, India: Springer. pp. 21-29. doi: 10.1007/978-81-322-2776-2_2

[8]

Liu K, Ma BL, Luan L, Li C. 2011. Nitrogen, phosphorus, and potassium nutrient effects on grain filling and yield of high-yielding summer corn. Journal of Plant Nutrition 34:1516−31

doi: 10.1080/01904167.2011.585208
[9]

Zörb C, Senbayram M, Peiter E. 2014. Potassium in agriculture – Status and perspectives. Journal of Plant Physiology 171:656−69

doi: 10.1016/j.jplph.2013.08.008
[10]

elov SV, Danyleiko YK, Glinushkin AP, Kalinitchenko VP, Egorov AV, et al. 2021. An activated potassium phosphate fertilizer solution for stimulating the growth of agricultural plants. Frontiers in Physics 8:618320

doi: 10.3389/fphy.2020.618320
[11]

Saljnikov E, Lavrishchev A, Römbke J, Rinklebe J, Scherber C, et al. 2022. Understanding and monitoring chemical and biological soil degradation. In Advances in Understanding Soil Degradation, ed. Saljnikov E, Mueller L, Lavrishchev A, Eulenstein F. Cham: Springer International Publishing. pp. 75-124. doi: 10.1007/978-3-030-85682-3_3

[12]

Lu M, Powlson DS, Liang Y, Chadwick DR, Long S, et al. 2021. Significant soil degradation is associated with intensive vegetable cropping in a subtropical area: a case study in southwestern China. SOIL 7:333−46

doi: 10.5194/soil-7-333-2021
[13]

Hunke P, Mueller EN, Schröder B, Zeilhofer P. 2015. The Brazilian Cerrado: assessment of water and soil degradation in catchments under intensive agricultural use. Ecohydrology 8:1154−80

doi: 10.1002/eco.1573
[14]

Manning DAC. 2010. Mineral sources of potassium for plant nutrition. A review. Agronomy for Sustainable Development 30:281−94

doi: 10.1051/agro/2009023
[15]

Kronenberg AK, Yund RA, Rossman GR. 1998. Reply to the comment by Robert H. Doremus on "Stationary and Mobile Hydrogen Defects in Potassium Feldspar". Geochimica et Cosmochimica Acta 62:379−82

doi: 10.1016/S0016-7037(98)00020-9
[16]

Harris MJ, Salje EKH, Guttler BK, Carpenter MA. 1989. Structural states of natural potassium feldspar: An infrared spectroscopic study. Physics and Chemistry of Minerals 16:649−58

doi: 10.1007/BF00223313
[17]

Hellmann R, Zhai Y, Robin E, Findling N, Mayanna S, et al. 2021. The hydrothermal alkaline alteration of potassium feldspar: A nanometer-scale investigation of the orthoclase interface. Chemical Geology 569:120133

doi: 10.1016/j.chemgeo.2021.120133
[18]

Ma H, Yang J, Su S, Liu M, Zheng H, et al. 2015. 20 Years advances in preparation of potassium salts from potassic rocks: a review. Acta Geologica Sinica (English Edition) 89:2058−71

doi: 10.1111/1755-6724.12617
[19]

Sanz Scovino JI, Rowell DL. 1988. The use of feldspars as potassium fertilizers in the savannah of Colombia. Fertilizer research 17:71−83

doi: 10.1007/BF01050458
[20]

Ciceri D, Close TC, Barker AV, Allanore A. 2019. Fertilizing Properties of Potassium Feldspar Altered Hydrothermally. Communications in Soil Science and Plant Analysis 50:482−91

doi: 10.1080/00103624.2019.1566922
[21]

Ciceri D, de Oliveira M, Allanore A. 2017. Potassium fertilizer via hydrothermal alteration of K-feldspar ore. Green Chemistry 19:5187−202

doi: 10.1039/C7GC02633A
[22]

Jena SK, Mohapatra S, Mohanty B, Nayak AP, Palatasingh S. 2024. Thermal treatment of K-feldspar for potassium recovery using NaCl–CaCl2 mixture and its mechanism study. Chemical Engineering Communications 211:251−62

doi: 10.1080/00986445.2023.2237901
[23]

Ma X, Yang J, Ma H, Liu C, Zhang P. 2015. Synthesis and characterization of analcime using quartz syenite powder by alkali-hydrothermal treatment. Microporous and Mesoporous Materials 201:134−40

doi: 10.1016/j.micromeso.2014.09.019
[24]

Yang J, Ma H. 2016. Zeolitization of potassic syenites by alkali-hydrothermal treatment and its mineralization significance. Acta Mineralogica Sinica 36:38−42

doi: 10.16461/j.cnki.1000-4734.2016.01.007
[25]

Jini D, Ganga VS, Greeshma MB, Sivashankar R, Thirunavukkarasu A. 2024. Sustainable agricultural practices using potassium-solubilizing microorganisms (KSMs) in coastal regions: a critical review on the challenges and opportunities. Environment Development and Sustainability 26:13641−64

doi: 10.1007/s10668-023-03199-9
[26]

Bakhshandeh E, Pirdashti H, Lendeh KS. 2017. Phosphate and potassium-solubilizing bacteria effect on the growth of rice. Ecological Engineering 103:164−69

doi: 10.1016/j.ecoleng.2017.03.008
[27]

Ali AM, Awad MYM, Hegab SA, Gawad AMAE, Eissa MA. 2021. Effect of potassium solubilizing bacteria (Bacillus cereus) on growth and yield of potato. Journal of Plant Nutrition 44:411−20

doi: 10.1080/01904167.2020.1822399
[28]

Wang Y, Yan X, Su M, Li J, Man T, et al. 2022. Isolation of potassium solubilizing bacteria in soil and preparation of liquid bacteria fertilizer from food wastewater. Biochemical Engineering Journal 181:108378

doi: 10.1016/j.bej.2022.108378
[29]

Liu S, Tang W, Yang F, Meng J, Chen W, et al. 2017. Influence of biochar application on potassium-solubilizing Bacillus mucilaginosus as potential biofertilizer. Preparative Biochemistry & Biotechnology 47:32−37

doi: 10.1080/10826068.2016.1155062
[30]

Khatoon Z, Huang S, Rafique M, Fakhar A, Kamran MA, et al. 2020. Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. Journal of Environmental Management 273:111118

doi: 10.1016/j.jenvman.2020.111118
[31]

Chen Y, Yang H, Shen Z, Ye J. 2022. Whole-genome sequencing and potassium-solubilizing mechanism of Bacillus aryabhattai SK1-7. Frontiers in Microbiology 12:722379

doi: 10.3389/fmicb.2021.722379
[32]

Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, et al. 2015. Potassium solubilizing rhizobacteria (KSR): Isolation, identification, and K-release dynamics from waste mica. Ecological Engineering 81:340−47

doi: 10.1016/j.ecoleng.2015.04.065
[33]

Santosh S, Velmourougane K, Idapuganti RG, Manikandan A, Blaise D. 2022. Potassium Solubilizing Potential of Native Bacterial Isolates from Cotton Rhizosphere of Rainfed Vertisols. National Academy Science Letters 45:209−12

doi: 10.1007/s40009-022-01113-x
[34]

Mali SD, Attar YC. 2021. Formulation of cost-effective agro residues containing potassium solubilizing bacterial bio-inoculants using response surface methodology. Biocatalysis and Agricultural Biotechnology 35:102113

doi: 10.1016/j.bcab.2021.102113
[35]

Lang J, Ye M, Luo Y, Wang Y, Shi Z, et al. 2024. Effects of potassium-solubilizing bacteria on growth, antioxidant activity and expression of related genes in Fritillaria taipaiensis P. Y. Li. Phyton - International Journal of Experimental Botany 93:789−806

doi: 10.32604/phyton.2024.049088
[36]

Wu X, Zhao Z, Zhao Z, Zhang Y, Li M, et al. 2023. Analysis of the potassium-solubilizing Priestia megaterium strain NK851 and its potassium feldspar-binding proteins. International Journal of Molecular Sciences 24:14226

doi: 10.3390/ijms241814226
[37]

Enagbonma BJ, Fadiji AE, Ayangbenro AS, Babalola OO. 2023. Communication between plants and rhizosphere microbiome: exploring the root microbiome for sustainable agriculture. Microorganisms 11:2003

doi: 10.3390/microorganisms11082003
[38]

Mahmud K, Missaoui A, Lee K, Ghimire B, Presley HW, et al. 2021. Rhizosphere microbiome manipulation for sustainable crop production. Current Plant Biology 27:100210

doi: 10.1016/j.cpb.2021.100210
[39]

Zhao Z, Liu L, Sun Y, Xie L, Liu S, et al. 2024. Combined microbe-plant remediation of cadmium in saline-alkali soil assisted by fungal mycelium-derived biochar. Environmental Research 240:117424

doi: 10.1016/j.envres.2023.117424
[40]

Bhuyan S, Yadav M, Giri SJ, Begum S, Das S, et al. 2023. Microliter spotting and micro-colony observation: A rapid and simple approach for counting bacterial colony forming units. Journal of Microbiological Methods 207:106707

doi: 10.1016/j.mimet.2023.106707
[41]

Hall BG. 2013. Building phylogenetic trees from molecular data with MEGA. Molecular Biology and Evolution 30:1229−35

doi: 10.1093/molbev/mst012
[42]

Zhao Z, Sun Y, Wang H, Yu Q. 2023. Regulation of cadmium-induced biofilm formation by artificial polysaccharide-binding proteins for enhanced phytoremediation. Chemosphere 342:140156

doi: 10.1016/j.chemosphere.2023.140156
[43]

Dong X, Lv L, Wang W, Liu Y, Yin C, et al. 2019. Differences in distribution of potassium-solubilizing bacteria in forest and plantation soils in myanmar. International Journal of Environmental Research and Public Health 16:700

doi: 10.3390/ijerph16050700
[44]

Sattar A, Naveed M, Ali M, Zahir ZA, Nadeem SM, et al. 2019. Perspectives of potassium solubilizing microbes in sustainable food production system: A review. Applied Soil Ecology 133:146−59

doi: 10.1016/j.apsoil.2018.09.012
[45]

Parmar P, Sindhu SS. 2013. Potassium Solubilization by Rhizosphere Bacteria: Influence of Nutritional and Environmental Conditions. Journal of Microbiology Research 3:25−31

[46]

Yaghoubi Khanghahi M, Pirdashti H, Rahimian H, Nematzadeh G, Ghajar Sepanlou M. 2018. Potassium solubilising bacteria (KSB) isolated from rice paddy soil: from isolation, identification to K use efficiency. Symbiosis 76:13−23

doi: 10.1007/s13199-017-0533-0
[47]

Zhang C, Kong F. 2014. Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Applied Soil Ecology 82:18−25

doi: 10.1016/j.apsoil.2014.05.002
[48]

Xiao Y, Wang X, Chen W, Huang Q. 2017. Isolation and Identification of Three Potassium-Solubilizing Bacteria from Rape Rhizospheric Soil and Their Effects on Ryegrass. Geomicrobiology Journal 34:873−80

doi: 10.1080/01490451.2017.1286416
[49]

Chien CC, Wang LJ, Lin WR. 2014. Polyhydroxybutyrate accumulation by a cadmium-resistant strain of Cupriavidus taiwanensis. Journal of the Taiwan Institute of Chemical Engineers 45:1164−69

doi: 10.1016/j.jtice.2014.02.004
[50]

Mahto KU, Das S. 2022. Bacterial biofilm and extracellular polymeric substances in the moving bed biofilm reactor for wastewater treatment: A review. Bioresource Technology 345:126476

doi: 10.1016/j.biortech.2021.126476
[51]

Cheah YT, Chan DJC. 2022. A methodological review on the characterization of microalgal biofilm and its extracellular polymeric substances. Journal of Applied Microbiology 132:3490−514

doi: 10.1111/jam.15455
[52]

Lee KWK, Periasamy S, Mukherjee M, Xie C, Kjelleberg S, et al. 2014. Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm. The ISME Journal 8:894−907

doi: 10.1038/ismej.2013.194
[53]

Silva NBS, Marques LA, Röder DDB. 2021. Diagnosis of biofilm infections: current methods used, challenges and perspectives for the future. Journal of Applied Microbiology 131:2148−60

doi: 10.1111/jam.15049
[54]

Feng LA, Liang B, Zeng X, Shi C, Yin H, et al. 2022. Engineered bacterium-binding protein promotes root recruitment of functional bacteria for enhanced cadmium removal from wastewater by phytoremediation. Water Research 221:118746

doi: 10.1016/j.watres.2022.118746
[55]

Yin H, Chen Y, Feng Y, Feng L, Yu Q. 2022. Synthetic physical contact-remodeled rhizosphere microbiome for enhanced phytoremediation. Journal of Hazardous Materials 433:128828

doi: 10.1016/j.jhazmat.2022.128828
[56]

Yi L, Dong X, Grenier D, Wang K, Wang Y. 2021. Research progress of bacterial quorum sensing receptors: Classification, structure, function and characteristics. Science of The Total Environment 763:143031

doi: 10.1016/j.scitotenv.2020.143031
[57]

Dar D, Dar N, Cai L, Newman DK. 2021. Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution. Science 373:eabi4882

doi: 10.1126/science.abi488
[58]

Xiao B, Lian B, Sun L, Shao W. 2012. Gene transcription response to weathering of K-bearing minerals by Aspergillus fumigatus. Chemical Geology 306-307:1−9

doi: 10.1016/j.chemgeo.2012.02.014
[59]

Xuan W, Beeckman T, Xu G. 2017. Plant nitrogen nutrition: sensing and signaling. Current Opinion in Plant Biology 39:57−65

doi: 10.1016/j.pbi.2017.05.010