[1]

Obuseng VC, Moshoeshoe MN, Nareetsile FM, Kwaambwa H, Maina I. 2022. Plant biomass as potential economic commodities for agricultural purposes. Frontiers in Chemistry 10:806772

doi: 10.3389/fchem.2022.806772
[2]

Li W, Xu W, Zhang S, Li J, Zhou J, et al. 2022. Supramolecular biopharmaceutical carriers based on host-guest interactions. Journal of Agricultural and Food Chemistry 14:12746−59

doi: 10.1021/acs.jafc.2c04822
[3]

Wang Y, Zafar N, Ali Q, Manghwar H, Wang G, et al. 2022. CRISPR/Cas genome editing technologies for plant improvement against biotic and abiotic stresses: advances, limitations, and future perspectives. Cells 11:3928

doi: 10.3390/cells11233928
[4]

Zhu Y, Xu F, Liu Q, Chen M, Liu X, et al. 2019. Nanomaterials and plants: positive effects, toxicity and the remediation of metal and metalloid pollution in soil. Science of The Total Environment 662:414−21

doi: 10.1016/j.scitotenv.2019.01.234
[5]

Sharma S, Rana VS, Pawar R, Lakra J, Racchapannavar V. 2021. Nanofertilizers for sustainable fruit production: a review. Environmental Chemistry Letters 19:1693−714

doi: 10.1007/s10311-020-01125-3
[6]

Bhardwaj B, Singh P, Kumar A, Kumar S, Budhwar V. 2020. Eco-friendly greener synthesis of nanoparticles. Advanced Pharmaceutical Bulletin 10:566−76

doi: 10.34172/apb.2020.067
[7]

Cheng J, Lin X, Wu X, Liu Q, Wan S, et al. 2021. Preparation of a multifunctional silver nanoparticles polylactic acid food packaging film using mango peel extract. International Journal of Biological Macromolecules 188:678−88

doi: 10.1016/j.ijbiomac.2021.07.161
[8]

Ramadan MA, Shawkey AE, Rabeh MA, Abdellatif AO. 2020. Promising antimicrobial activities of oil and silver nanoparticles obtained from Melaleuca alternifolia leaves against selected skin-infecting pathogens. Journal of Herbal Medicine 20:100289

doi: 10.1016/j.hermed.2019.100289
[9]

Dalir SJB, Djahaniani H, Nabati F, Hekmati M. 2020. Characterization and the evaluation of antimicrobial activities of silver nanoparticles biosynthesized from Carya illinoinensis leaf extract. Heliyon 6:e03624

doi: 10.1016/j.heliyon.2020.e03624
[10]

Soni N, Dhiman RC. 2017. Phytochemical, anti-oxidant, larvicidal, and antimicrobial activities of castor (Ricinus communis) synthesized silver nanoparticles. Chinese Herbal Medicines 9:289−94

doi: 10.1016/S1674-6384(17)60106-0
[11]

Sengupta A, Sarkar A. 2022. Synthesis and characterization of nanoparticles from neem leaves and banana peels: a green prospect for dye degradation in wastewater. Ecotoxicology 31:537−48

doi: 10.1007/s10646-021-02414-5
[12]

Moale C, Ghiurea M, Sîrbu CE, Somoghi R, Cioroianu TM, et al. 2021. Effects of siliceous natural nanomaterials applied in combination with foliar fertilizers on physiology, yield and fruit quality of the apricot and peach trees. Plants 10:2395

doi: 10.3390/plants10112395
[13]

Zhang H, Li C, Wei K, Liu M, Shi Y, et al. 2023. The reduction of tea quality caused by irrational phosphate application is associated with anthocyanin metabolism. Beverage Plant Research 3:10

doi: 10.48130/BPR-2023-0010
[14]

Abdelmigid HM, Morsi MM, Hussien NA, Alyamani AA, Alhuthal NA, et al. 2022. Green synthesis of phosphorous-containing hydroxyapatite nanoparticles (nHAP) as a novel nano-fertilizer: preliminary assessment on pomegranate (Punica granatum L.). Nanomaterials 12:1527

doi: 10.3390/nano12091527
[15]

Montaño-Herrera A, Santiago-Saenz YO, López-Palestina CU, Cadenas-Pliego G, Pinedo-Guerrero ZH, et al. 2022. Effects of edaphic fertilization and foliar application of Se and Zn nanoparticles on yield and bioactive compounds in Malus domestica L. Horticulturae 8:542

doi: 10.3390/horticulturae8060542
[16]

Shi S, Wang W, Liu L, Wu S, Wei Y, et al. 2013. Effect of chitosan/nano-silica coating on the physicochemical characteristics of longan fruit under ambient temperature. Journal of Food Engineering 118:125−31

doi: 10.1016/j.jfoodeng.2013.03.029
[17]

Hu Q, Fang Y, Yang Y, Ma N, Zhao L. 2011. Effect of nanocomposite-based packaging on postharvest quality of ethylene-treated kiwifruit (Actinidia deliciosa) during cold storage. Food Research International 44:1589−96

doi: 10.1016/j.foodres.2011.04.018
[18]

Shahbaz M, Fatima N, Mashwani ZUR, Akram A, Haq EU, et al. 2022. Effect of phytosynthesized selenium and cerium oxide nanoparticles on wheat (Triticum aestivum L.) against stripe rust disease. Molecules 27:8149

doi: 10.3390/molecules27238149
[19]

Abdallah Y, Ogunyemi SO, Abdelazez A, Zhang M, Hong X, et al. 2019. The green synthesis of MgO nano-flowers using Rosmarinus officinalis L. (Rosemary) and the antibacterial activities against Xanthomonas oryzae pv. oryzae. Biomed Research International 51:5752−56

doi: 10.1155/2019/5620989
[20]

Shah T, Latif S, Saeed F, Ali I, Ullah S, et al. 2021. Seed priming with titanium dioxide nanoparticles enhances seed vigor, leaf water status, and antioxidant enzyme activities in maize (Zea mays L.) under salinity stress. Journal of King Saud University - Science 33:101207

doi: 10.1016/j.jksus.2020.10.004
[21]

Baz H, Creech M, Chen J, Gong H, Bradford K, et al. 2020. Water-soluble carbon nanoparticles improve seed germination and post-germination growth of lettuce under salinity stress. Agronomy 10:1192

doi: 10.3390/agronomy10081192
[22]

Mahakham W, Sarmah AK, Maensiri S, Theerakulpisut P. 2017. Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Scientific Reports 7:8263

doi: 10.1038/s41598-017-08669-5
[23]

Esser B, Schnorr JM, Swager TM. 2012. Selective detection of ethylene gas using carbon nanotube-based devices: utility in determination of fruit ripeness. Angewandte Chemie (International Edition) 51:5752−56

doi: 10.1002/anie.201201042
[24]

Lew TTS, Park M, Cui J, Strano MS. 2021. Plant nanobionic sensors for arsenic detection. Advanced Materials 33:2005683

doi: 10.1002/adma.202005683
[25]

Trang NLN, Nga DTN, Hoang VT, Ngo XD, Nhung PT, et al. 2022. Bio-AgNPs-based electrochemical nanosensors for the sensitive determination of 4-nitrophenol in tomato samples: the roles of natural plant extracts in physicochemical parameters and sensing performance. RSC Advances 12:6007−17

doi: 10.1039/D1RA09202B
[26]

Xing Y, Yang H, Guo X, Bi X, Liu X, et al. 2020. Effect of chitosan/nano-TiO2 composite coatings on the postharvest quality and physicochemical characteristics of mango fruits. Scientia Horticulturae 263:109135

doi: 10.1016/j.scienta.2019.109135
[27]

Tian F, Chen W, Wu C, Kou X, Fan G, et al. 2019. Preservation of Ginkgo biloba seeds by coating with chitosan/nano-TiO2 and chitosan/nano-SiO2 films. International Journal of Biological Macromolecules 126:917−25

doi: 10.1016/j.ijbiomac.2018.12.177
[28]

Eldib R. 2020. Application of nano-coating and chitosan combination films on cantaloupe preservation. Pakistan Journal of Biological Sciences 23:1037−43

doi: 10.3923/pjbs.2020.1037.1043
[29]

Xin Y, Chen F, Lai S, Yang H. 2017. Influence of chitosan-based coatings on the physicochemical properties and pectin nanostructure of Chinese cherry. Postharvest Biology and Technology 133:64−71

doi: 10.1016/j.postharvbio.2017.06.010
[30]

Sun T, Hao W, Li J, Dong Z, Wu C. 2015. Preservation properties of in situ modified CaCO3-chitosan composite coatings. Food Chemistry 183:217−26

doi: 10.1016/j.foodchem.2015.03.036
[31]

Xiao J, Gu C, Zhu D, Huang Y, Luo Y, et al. 2021. Development and characterization of an edible chitosan/zein-cinnamaldehyde nano-cellulose composite film and its effects on mango quality during storage. LWT 140:110809

doi: 10.1016/j.lwt.2020.110809
[32]

Wang Y, Zhang J, Wang D, Wang X, Zhang F, et al. 2023. Effects of cellulose nanofibrils treatment on antioxidant properties and aroma of fresh-cut apples. Food Chemistry 415:135797

doi: 10.1016/j.foodchem.2023.135797
[33]

Oprea I, Fărcaș AC, Leopold LF, Diaconeasa Z, Coman C, et al. 2022. Nano-encapsulation of citrus essential oils: methods and applications of interest for the food sector. Polymers 14:4505

doi: 10.3390/polym14214505
[34]

Wei H, Seidi F, Zhang T, Jin Y, Xiao H. 2021. Ethylene scavengers for the preservation of fruits and vegetables: a review. Food Chemistry 337:127750

doi: 10.1016/j.foodchem.2020.127750
[35]

Zhai R, Chen G, Liu G, Huang X, Xu X, et al. 2022. Enzyme inhibition methods based on Au nanomaterials for rapid detection of organophosphorus pesticides in agricultural and environmental samples: a review. Journal of Advanced Research 37:61−74

doi: 10.1016/j.jare.2021.08.008
[36]

Zhang J, Wu C, Yuan R, Huang J, Yang X. 2022. Gap controlled self-assembly Au@Ag@Au NPs for SERS assay of thiram. Food Chemistry 390:133164

doi: 10.1016/j.foodchem.2022.133164
[37]

Su D, Li H, Yan X, Lin Y, Lu G. 2021. Biosensors based on fluorescence carbon nanomaterials for detection of pesticides. TrAC Trends in Analytical Chemistry 134:116126

doi: 10.1016/j.trac.2020.116126
[38]

Zhou JW, Zou XM, Song SH, Chen GH. 2018. Quantum dots applied to methodology on detection of pesticide and veterinary drug residues. Journal of Agricultural and Food Chemistry 66:1307−19

doi: 10.1021/acs.jafc.7b05119
[39]

Wang J, Wang X, Wang M, Bian Q, Zhong J. 2022. Novel Ce-based coordination polymer nanoparticles with excellent oxidase mimic activity applied for colorimetric assay to organophosphorus pesticides. Food Chemistry 397:133810

doi: 10.1016/j.foodchem.2022.133810
[40]

Xu Y, Wang H, Li X, Zeng X, Du Z, et al. 2021. Metal-organic framework for the extraction and detection of pesticides from food commodities. Comprehensive Reviews in Food Science and Food Safety 20:1009−35

doi: 10.1111/1541-4337.12675
[41]

Danish M, Shahid M, Ahamad L, Raees K, Hatamleh AA, et al. 2022. Nano-pesticidal potential of Cassia fistula (L.) leaf synthesized silver nanoparticles (Ag@CfL-NPs): deciphering the phytopathogenic inhibition and growth augmentation in Solanum lycopersicum (L.). Frontiers in Microbiology 13:985852

doi: 10.3389/fmicb.2022.985852
[42]

Pascoli M, Jacques MT, Agarrayua DA, Avila DS, Lima R, et al. 2019. Neem oil based nanopesticide as an environmentally-friendly formulation for applications in sustainable agriculture: an ecotoxicological perspective. Science of The Total Environment 677:57−67

doi: 10.1016/j.scitotenv.2019.04.345
[43]

Muda MS, Kamari A, Abu Bakar S, Yusoff SNM, Fatimah I, et al. 2020. Chitosan-graphene oxide nanocomposites as water-solubilising agents for rotenone pesticide. Journal of Molecular Liquids 318:114066

doi: 10.1016/j.molliq.2020.114066
[44]

Yusoff SNM, Kamari A. 2018. N-deoxycholic acid-O-glycol chitosan as a potential carrier agent for botanical pesticide rotenone. Journal of Applied Polymer Science 135:46855

doi: 10.1002/app.46855
[45]

Sun X, Chen J, Fan W, Liu S, Kamruzzaman M. 2022. Production of reactive oxygen species via nanobubble water improves radish seed water absorption and the expression of aquaporin genes. Langmuir 38:11724−31

doi: 10.1021/acs.langmuir.2c01860
[46]

Zaka M, Abbasi BH, Rahman LU, Shah A, Zia M. 2016. Synthesis and characterisation of metal nanoparticles and their effects on seed germination and seedling growth in commercially important Eruca sativa. IET Nanobiotechnology 10:134−40

doi: 10.1049/iet-nbt.2015.0039
[47]

Ngo QB, Dao TH, Nguyen HC, Tran XT, Van Nguyen T, et al. 2014. Effects of nanocrystalline powders (Fe, Co and Cu) on the germination, growth, crop yield and product quality of soybean (Vietnamese species DT-51). Advances in Natural Sciences: Nanoscience and Nanotechnology 5:015016

doi: 10.1088/2043-6262/5/1/015016
[48]

Iram F, Iqbal MS, Athar MM, Saeed MZ, Yasmeen A, et al. 2014. Glucoxylan-mediated green synthesis of gold and silver nanoparticles and their phyto-toxicity study. Carbohydrate Polymers 104:29−33

doi: 10.1016/j.carbpol.2014.01.002
[49]

Xu X, Shen R, Mo L, Yang X, Chen X, et al. 2022. Improving plant photosynthesis through light-harvesting upconversion nanoparticles. ACS Nano 16:18027−37

doi: 10.1021/acsnano.2c02162
[50]

Priyanka N, Geetha N, Manish T, Sahi SV, Venkatachalam P. 2021. Zinc oxide nanocatalyst mediates cadmium and lead toxicity tolerance mechanism by differential regulation of photosynthetic machinery and antioxidant enzymes level in cotton seedlings. Toxicology Reports 8:295−302

doi: 10.1016/j.toxrep.2021.01.016
[51]

Skiba E, Pietrzak M, Glińska S, Wolf WM. 2021. The combined effect of ZnO and CeO2 nanoparticles on Pisum sativum L.: a photosynthesis and nutrients uptake study. Cells 10:3105

doi: 10.3390/cells10113105
[52]

Jing X, Liu Y, Liu X, Zhang Y, Wang G, et al. 2024. Enhanced photosynthetic efficiency by nitrogen-doped carbon dots via plastoquinone-involved electron transfer in apple. Horticulture Research 11:uhae016

doi: 10.1093/hr/uhae016
[53]

Jiménez-Rosado M, Perez-Puyana V, Guerrero A, Romero A. 2022. Micronutrient-controlled-release protein-based systems for horticulture: micro vs. nanoparticles. Industrial Crops and Products 185:115128

doi: 10.1016/j.indcrop.2022.115128
[54]

El-Badri AMA, Batool M, Mohamed IAA, Khatab A, Sherif A, et al. 2021. Modulation of salinity impact on early seedling stage via nano-priming application of zinc oxide on rapeseed (Brassica napus L.). Plant Physiology and Biochemistry 166:376−92

doi: 10.1016/j.plaphy.2021.05.040
[55]

Davarpanah S, Tehranifar A, Abadía J, Val J, Davarynejad G, et al. 2018. Foliar calcium fertilization reduces fruit cracking in pomegranate (Punica granatum cv. Ardestani). Scientia Horticulturae 230:86−91

doi: 10.1016/j.scienta.2017.11.023
[56]

Chen L, Huang J, Chen J, Shi Q, Chen T, et al. 2022. Halloysite nanotube-based pesticide formulations with enhanced rain erosion resistance, foliar adhesion, and insecticidal effect. ACS Applied Materials & Interfaces 14:41605−17

doi: 10.1021/acsami.2c11234
[57]

Yang CY, Powell CA, Duan YP, Zhang MQ. 2016. Characterization and antibacterial activity of oil-in-water nano-emulsion formulation against Candidatus Liberibacter asiaticus. Plant Disease 100:2448−54

doi: 10.1094/PDIS-05-16-0600-RE
[58]

Yadav J, Jasrotia P, Kashyap PL, Bhardwaj AK, Kumar S, et al. 2022. Nanopesticides: current status and scope for their application in agriculture. Plant Protection Science 58:1−17

doi: 10.17221/102/2020-PPS
[59]

Wang D, Saleh NB, Byro A, Zepp R, Sahle-Demessie E, et al. 2022. Nano-enabled pesticides for sustainable agriculture and global food security. Nature Nanotechnology 17:347−60

doi: 10.1038/s41565-022-01082-8
[60]

Azmat A, Tanveer Y, Yasmin H, Hasan MN, Shahzad A, et al. 2022. Coactive role of zinc oxide nanoparticles and plant growth promoting rhizobacteria for mitigation of synchronized effects of heat and drought stress in wheat plants. Chemosphere 297:133982

doi: 10.1016/j.chemosphere.2022.133982
[61]

Alabdallah NM, Hasan MM, Hammami I, Alghamdi AI, Alshehri D, et al. 2021. Green synthesized metal oxide nanoparticles mediate growth regulation and physiology of crop plants under drought stress. Plants 10:1730

doi: 10.3390/plants10081730
[62]

Rezaei Cherati S, Shanmugam S, Pandey K, Khodakovskaya MV. 2021. Whole-transcriptome responses to environmental stresses in agricultural crops treated with carbon-based nanomaterials. ACS Applied Bio Materials 4:4292−301

doi: 10.1021/acsabm.1c00108
[63]

Kolenčík M, Ernst D, Komár M, Urík M, Šebesta M, et al. 2022. Effects of foliar application of ZnO nanoparticles on lentil production, stress level and nutritional seed quality under field conditions. Nanomaterials 12:310

doi: 10.3390/nano12030310
[64]

Li D, Li L, Luo Z, Lu H, Yue Y. 2017. Effect of nano-ZnO-packaging on chilling tolerance and pectin metabolism of peaches during cold storage. Scientia Horticulturae 225:128−33

doi: 10.1016/j.scienta.2017.07.003
[65]

Maryan KE, Lahiji HS, Farrokhi N, Haynes PA, Hamzelou S, et al. 2021. Comparative leaf proteomics of Brassica napus genotypes with distinctive levels of early cold acclimation. Plant Molecular Biology Reporter 39:317−34

doi: 10.1007/s11105-020-01249-4
[66]

Hossain MA, Ahammed GJ, Kolbert Z, El-Ramady H, Islam T, et al. 2022. Selenium and nano-selenium in environmental stress management and crop quality improvement. Cham: Springer. xiii, 458 pp. doi: 10.1007/978-3-031-07063-1

[67]

Mohammadi R, Maali-Amiri R, Abbasi A. 2013. Effect of TiO2 nanoparticles on chickpea response to cold stress. Biological Trace Element Research 152:403−10

doi: 10.1007/s12011-013-9631-x
[68]

Chen Z, Wang Q. 2021. Graphene ameliorates saline-alkaline stress-induced damage and improves growth and tolerance in alfalfa (Medicago sativa L.). Plant Physiology and Biochemistry 163:128−38

doi: 10.1016/j.plaphy.2021.03.039
[69]

An J, Hu P, Li F, Wu H, Shen Y, et al. 2020. Emerging investigator series: molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles. Environmental Science: Nano 7:2214−28

doi: 10.1039/D0EN00387E
[70]

Ding L, Li J, Liu W, Zuo Q, Liang S. 2017. Influence of nano-hydroxyapatite on the metal bioavailability, plant metal accumulation and root exudates of ryegrass for phytoremediation in lead-polluted soil. International Journal of Environmental Research and Public Health 14:532

doi: 10.3390/ijerph14050532
[71]

Wang H, Zhang M, Li H. 2019. Synthesis of nanoscale zerovalent iron (nZVI) supported on biochar for chromium remediation from aqueous solution and soil. International Journal of Environmental Research and Public Health 16:4430

doi: 10.3390/ijerph16224430
[72]

Song P, Ma W, Gao X, Ai S, Wang J, et al. 2022. Remediation mechanism of Cu, Zn, As, Cd, and Pb contaminated soil by biochar-supported nanoscale zero-valent iron and its impact on soil enzyme activity. Journal of Cleaner Production 378:134510

doi: 10.1016/j.jclepro.2022.134510
[73]

da Silva Carneiro JS, da Costa Leite DA, de Castro GM, Franca JR, Botelho L, et al. 2022. Biochar-graphene oxide composite is efficient to adsorb and deliver copper and zinc in tropical soil. Journal of Cleaner Production 360:132170

doi: 10.1016/j.jclepro.2022.132170
[74]

Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, et al. 2007. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature Nanotechnology 2:577−83

doi: 10.1038/nnano.2007.260
[75]

Liu J, Gu J, Hu J, Ma H, Tao Y, et al. 2023. Use of Mn3O4 nanozyme to improve cotton salt tolerance. Plant Biotechnology Journal 21:1935−37

doi: 10.1111/pbi.14145
[76]

Khan MN, Li Y, Khan Z, Chen L, Liu J, et al. 2021. Nanoceria seed priming enhanced salt tolerance in rapeseed through modulating ROS homeostasis and α-amylase activities. Journal of Nanobiotechnology 19:276

doi: 10.1186/s12951-021-01026-9
[77]

Gong J, Liu Q, Cai L, Yang Q, Tong Y, et al. 2023. Multimechanism collaborative superior antioxidant CDzymes To alleviate salt stress-induced oxidative damage in plant growth. ACS Sustainable Chemistry & Engineering 11:4237−47

doi: 10.1021/acssuschemeng.2c07371
[78]

Yan X, Chen S, Pan Z, Zhao W, Rui Y, et al. 2023. AgNPs-triggered seed metabolic and transcriptional reprogramming enhanced rice salt tolerance and blast resistance. ACS Nano 17:492−504

doi: 10.1021/acsnano.2c09181
[79]

Sun G, Dong Z, Li G, Yuan H, Liu J, et al. 2023. Mn3O4 nanoparticles alleviate ROS-inhibited root apex mitosis activities to improve maize drought tolerance. Advanced Biology 7:2200317

doi: 10.1002/adbi.202200317
[80]

Zhao D, Fang Z, Tang Y, Tao J. 2020. Graphene oxide as an effective soil water retention agent can confer drought stress tolerance to Paeonia ostii without toxicity. Environmental Science & Technology 54:8269−79

doi: 10.1021/acs.est.0c02040
[81]

Martin Palmqvist NG, Seisenbaeva GA, Svedlindh P, Kessler VG. 2017. Maghemite nanoparticles acts as nanozymes, improving growth and abiotic stress tolerance in Brassica napus. Nanoscale Research Letters 12:631

doi: 10.1186/s11671-017-2404-2
[82]

Gong X, Huang D, Liu Y, Zeng G, Wang R, et al. 2019. Roles of multiwall carbon nanotubes in phytoremediation: cadmium uptake and oxidative burst in Boehmeria nivea (L.) Gaudich. Environmental Science: Nano 6:851−62

doi: 10.1039/C8EN00723C
[83]

Tai F, Wang S, Liang B, Li Y, Wu J, et al. 2022. Quaternary ammonium iminofullerenes improve root growth of oxidative-stress maize through ASA-GSH cycle modulating redox homeostasis of roots and ROS-mediated root-hair elongation. Journal of Nanobiotechnology 20:15

doi: 10.1186/s12951-021-01222-7
[84]

Roger LM, Russo JA, Jinkerson RE, Giraldo JP, Lewinski NA. 2022. Engineered nanoceria alleviates thermally induced oxidative stress in free-living Breviolum minutum (Symbiodiniaceae, formerly Clade B). Frontiers in Marine Science 9:960173

doi: 10.3389/fmars.2022.960173
[85]

Liu J, Wang F, Wang L, Xiao S, Tong C, et al. 2008. Preparation of fluorescence starch-nanoparticle and its application as plant transgenic vehicle. Journal of Central South University of Technology 15:768−73

doi: 10.1007/s11771-008-0142-4
[86]

Zhao X, Meng Z, Wang Y, Chen W, Sun C, et al. 2017. Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nature Plants 3:956−64

doi: 10.1038/s41477-017-0063-z
[87]

Martin-Ortigosa S, Valenstein JS, Lin VSY, Trewyn BG, Wang K. 2012. Gold functionalized mesoporous silica nanoparticle mediated protein and DNA codelivery to plant cells via the biolistic method. Advanced Functional Materials 22:3576−82

doi: 10.1002/adfm.201200359
[88]

Demirer GS, Zhang H, Goh NS, González-Grandío E, Landry MP. 2019. Carbon nanotube–mediated DNA delivery without transgene integration in intact plants. Nature Protocols 14:2954−71

doi: 10.1038/s41596-019-0208-9
[89]

Zhang H, Cao Y, Xu D, Goh NS, Demirer GS, et al. 2021. Gold-nanocluster-mediated delivery of siRNA to intact plant cells for efficient gene knockdown. Nano Letters 21:5859−66

doi: 10.1021/acs.nanolett.1c01792
[90]

Liu Y, Yang F, Jing X, Liu X, Wang G, et al. 2023. A biomimetic nanoparticle for pDNA delivery and expression in plant cells in a pH-dependent manner. ACS Agricultural Science & Technology 3:631−41

doi: 10.1021/acsagscitech.3c00068
[91]

Li S, Li J, Du M, Deng G, Song Z, Han H. 2022. Efficient gene silencing in intact plant cells using siRNA delivered by functional graphene oxide nanoparticles. Angewandte Chemie (International Edition) 61:e202210014

doi: 10.1002/anie.202210014
[92]

Zhang H, Zhang H, Demirer GS, González-Grandío E, Fan C, et al. 2020. Engineering DNA nanostructures for siRNA delivery in plants. Nature Protocols 15:3064−87

doi: 10.1038/s41596-020-0370-0
[93]

Chang FP, Kuang LY, Huang CA, Jane WN, Hung Y, et al. 2013. A simple plant gene delivery system using mesoporous silica nanoparticles as carriers. Journal of Materials Chemistry B 1:5279−87

doi: 10.1039/c3tb20529k
[94]

Vijayakumar PS, Abhilash OU, Khan BM, Prasad BLV. 2010. Nanogold-loaded sharp-edged carbon bullets as plant-gene carriers. Advanced Functional Materials 20:2416−23

doi: 10.1002/adfm.200901883
[95]

Torney F, Trewyn BG, Lin VSY, Wang K. 2007. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nature Nanotechnology 2:295−300

doi: 10.1038/nnano.2007.108
[96]

Hao Y, Yang X, Shi Y, Song S, Xing J, et al. 2013. Magnetic gold nanoparticles as a vehicle for fluorescein isothiocyanate and DNA delivery into plant cells. Botany 91:457−66

doi: 10.1139/cjb-2012-0281
[97]

Wang Z, Zhang Z, Zheng D, Zhang T, Li X, et al. 2022. Efficient and genotype independent maize transformation using pollen transfected by DNA-coated magnetic. Journal of Integrative Plant Biology 64:1145−56

doi: 10.1111/jipb.13263