[1] |
Yu B, Yao Z. 2006. The Clematis Medicinal Plant Resources in Zhejiang. Jiangxi Science 24:89−92 doi: 10.13990/j.issn1001-3679.2006.01.024 |
[2] |
Ji M, Shan X, Zhang Y. 2008. Investigation on Clematis resources in Zhejiang Province. Journal of Beijing Forestry University 30:66−72 doi: 10.3321/j.issn:1000-1522.2008.05.011 |
[3] |
Qian R, Hu Q, Ma X, Zhang X, Ye Y, et al. 2022. Comparative transcriptome analysis of heat stress responses of Clematis lanuginosa and Clematis crassifolia. BMC Plant Biology 22:138 doi: 10.1186/s12870-022-03497-w |
[4] |
Tanaka Y, Sasaki N, Ohmiya A. 2008. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. The Plant Journal 54:733−49 doi: 10.1111/j.1365-313X.2008.03447.x |
[5] |
Forkmann G, Martens S. 2001. Metabolic engineering and applications of flavonoids. Current Opinion in Biotechnology 12:155−60 doi: 10.1016/S0958-1669(00)00192-0 |
[6] |
Smeriglio A, Barreca D, Bellocco E, Trombetta D. 2016. Chemistry, pharmacology and health benefits of anthocyanins. Phytotherapy Research 30:1265−86 doi: 10.1002/ptr.5642 |
[7] |
Kong JM, Chia LS, Goh NK, Chia TF, Brouillard R. 2003. Analysis and biological activities of anthocyanins. Phytochemistry 64:923−33 doi: 10.1016/S0031-9422(03)00438-2 |
[8] |
Pei Z, Huang Y, Ni J, Yang Q. 2024. For a colorful life: recent advances in anthocyanin biosynthesis during leaf senescence. Biology 13:329 doi: 10.3390/biology13050329 |
[9] |
Tatsuzawa F, Takahashi K, Sano H, Seto H, Mitobe Y, et al. 2024. Flower colors and their anthocyanins in Platycodon grandiflorus (Jacq.) A. DC. (Campanulaceae). Phytochemistry Letters 61:125−34 doi: 10.1016/j.phytol.2024.04.002 |
[10] |
Petroni K, Tonelli C. 2011. Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Science 181:219−29 doi: 10.1016/j.plantsci.2011.05.009 |
[11] |
Morita Y, Saitoh M, Hoshino A, Nitasaka E, Iida S. 2006. Isolation of cDNAs for R2R3-MYB, bHLH and WDR transcriptional regulators and identification of c and ca mutations conferring white flowers in the Japanese morning glory. Plant and Cell Physiology 47:457−70 doi: 10.1093/pcp/pcj012 |
[12] |
Nishijima T, Morita Y, Sasaki K, Nakayama M, Yamaguchi H, et al. 2013. A torenia (Torenia fournieri Lind. ex Fourn.) novel mutant 'Flecked' produces variegated flowers by insertion of a DNA transposon into an R2R3-MYB gene. Journal of the Japanese Society for Horticultural Science 82:39−50 doi: 10.2503/jjshs1.82.39 |
[13] |
Hellens RP, Moreau C, Kui LW, Schwinn KE, Thomson SJ, et al. 2010. Identification of Mendel's white flower character. PLoS One 5:e13230 doi: 10.1371/journal.pone.0013230 |
[14] |
Voss DH. 1992. Relating colorimeter measurement of plant color to the Royal Horticultural Society Colour Chart. HortScience 27:1256−60 doi: 10.21273/HORTSCI.27.12.1256 |
[15] |
Wang LS, Hashimoto F, Shiraishi A, Aoki N, Li JJ, et al. 2004. Chemical taxonomy of the Xibei tree peony from China by floral pigmentation. Journal of Plant Research 117:47−55 doi: 10.1007/s10265-003-0130-6 |
[16] |
Acevedo De la Cruz A, Hilbert G, Rivière C, Mengin V, Ollat N, et al. 2012. Anthocyanin identification and composition of wild Vitis spp. accessions by using LC–MS and LC–NMR. Analytica Chimica Acta 732:145−52 doi: 10.1016/j.aca.2011.11.060 |
[17] |
Di Paola-Naranjo RD, Sánchez-Sánchez J, González-Paramás AM, Rivas-Gonzalo JC. 2004. Liquid chromatographic–mass spectrometric analysis of anthocyanin composition of dark blue bee pollen from Echium plantagineum. Journal of Chromatography A 1054:205−10 doi: 10.1016/j.chroma.2004.05.023 |
[18] |
Gennebäck N, Malm L, Hellman U, Waldenström A, Mörner S. 2013. Using OPLS-DA to find new hypotheses in vast amounts of gene expression data — Studying the progression of cardiac hypertrophy in the heart of aorta ligated rat. Gene 522:27−36 doi: 10.1016/j.gene.2013.03.018 |
[19] |
van Elteren P. 1960. On the combination of independent two sample tests of wilcoxon. Chemosphere 37:81−87 |
[20] |
Hyun TK, Rim Y, Jang HJ, Kim CH, Park J, et al. 2012. De novo transcriptome sequencing of Momordica cochinchinensis to identify genes involved in the carotenoid biosynthesis. Plant Molecular Biology 79:413−27 doi: 10.1007/s11103-012-9919-9 |
[21] |
Ye Y, Wang J, Ni Z, Meng X, Feng Y, et al. 2020. Small RNA and degradome sequencing reveal roles of miRNAs in strobilus development in masson pine (Pinus massoniana). Industrial Crops and Products 154:112724 doi: 10.1016/j.indcrop.2020.112724 |
[22] |
Malki K, Tosto MG, Jumabhoy I, Lourdusamy A, Sluyter F, et al. 2013. Integrative mouse and human mRNA studies using WGCNA nominates novel candidate genes involved in the pathogenesis of major depressive disorder. Pharmacogenomics 14:1979−90 doi: 10.2217/pgs.13.154 |
[23] |
Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. 2011. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431−32 doi: 10.1093/bioinformatics/btq675 |
[24] |
Shimizu K, Adachi J, Muraoka Y. 2006. ANGLE: a sequencing errors resistant program for predicting protein coding regions in unfinished cDNA. Journal of Bioinformatics and Computational Biology 4(03):649−64 doi: 10.1142/S0219720006002260 |
[25] |
Matsui K, Umemura Y, Ohme-Takagi M. 2008. AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis. The Plant Journal 55:954−67 doi: 10.1111/j.1365-313X.2008.03565.x |
[26] |
Katsumoto Y, Fukuchi-Mizutani M, Fukui Y, Brugliera F, Holton TA, et al. 2007. Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant and Cell Physiology 48:1589−600 doi: 10.1093/pcp/pcm131 |
[27] |
Mueller LA, Goodman CD, Silady RA, Walbot V. 2000. AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. Plant Physiology 123:1561−70 doi: 10.1104/pp.123.4.1561 |
[28] |
Hou W , Yan P, Shi T, Lu P, Zhao W, et al. 2023. Modulation of anthocyanin accumulation in storage roots of sweetpotato by transcription factor IbMYB1-2 through direct binding to anthocyanin biosynthetic gene promoters. Plant Physiology and Biochemistry 196:868−79 doi: 10.1016/j.plaphy.2023.02.050 |
[29] |
Mizuta D, Ban T, Miyajima I, Nakatsuka A, Kobayashi N. 2009. Comparison of flower color with anthocyanin composition patterns in evergreen azalea. Scientia Horticulturae 122:594−602 doi: 10.1016/j.scienta.2009.06.027 |
[30] |
Chen J, Chen H, Wang H, Zhan J, Yuan X, et al. 2023. Selenium treatment promotes anthocyanin accumulation in radish sprouts (Raphanus sativus L.) by its regulation of photosynthesis and sucrose transport. Food Research International 165:112551 doi: 10.1016/j.foodres.2023.112551 |
[31] |
Tao H, Gao F, Li L, He Y, Zhang X, et al. 2024. WRKY33 negatively regulates anthocyaninbiosynthesis and cooperates with PHR1 to mediate acclimation to phosphate starvation. Plant Communications 5:100821 doi: 10.1016/j.xplc.2024.100821 |
[32] |
Wang F, Ji G, Xu Z, Feng B, Zhou Q, et al. 2021. Metabolomics and transcriptomics provide insights into anthocyanin biosynthesis in the developing grains of purple wheat (Triticum aestivum L.). Journal of Agricultural and Food Chemistry 38:11171−84 doi: 10.1021/acs.jafc.1c01719 |
[33] |
Putterill J, Laurie R, Macknight R. 2004. It's time to flower: the genetic control of flowering time. BioEssays 26:363−73 doi: 10.1002/bies.20021 |
[34] |
Grover CE, Gallagher JP, Wendel JF. 2015. Candidate gene identification of flowering time genes in cotton. The Plant Genome 8:plantgenome2014.12.0098 doi: 10.3835/plantgenome2014.12.0098 |
[35] |
Hong Y, Tang X, Huang H, Zhang Y, Dai S. 2015. Transcriptomic analyses reveal species-specific light-induced anthocyanin biosynthesis in chrysanthemum. BMC Genomics 16:202 doi: 10.1186/s12864-015-1428-1 |
[36] |
Bian S, Li R, Xia S, Liu Y, Jin D, et al. 2018. Soybean CCA1-like MYB transcription factor GmMYB133 modulates isoflavonoid biosynthesis. Biochemical and Biophysical Research Communications 507:324−29 doi: 10.1016/j.bbrc.2018.11.033 |
[37] |
Jin W, Wang H, Li M, Wang J, Yang Y, et al. 2016. The R2R3 MYB transcription factor PavMYB10.1 involves in anthocyanin biosynthesis and determines fruit skin colour in sweet cherry (Prunus avium L.). Plant Biotechnology Journal 14:2120−33 doi: 10.1111/pbi.12568 |
[38] |
Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, et al. 2007. Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. The Plant Journal 49:414−27 doi: 10.1111/j.1365-313X.2006.02964.x |
[39] |
Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, et al. 2007. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. The Plant Journal 50:660−77 doi: 10.1111/j.1365-313X.2007.03078.x |
[40] |
An XH, Tian Y, Chen QK, Wang XF, HaoYJ. 2012. The apple WD40 protein MdTTG1 interacts with bHLH but not MYB proteins to regulate anthocyanin accumulation. Journal of Plant Physiology 169:710−17 doi: 10.1016/j.jplph.2012.01.015 |
[41] |
Nie X, Zhao Y, Zhang L, Tang Y, Wang J, et al. 2015. Mechanisms of MYB-bHLH-WD40 complex in the regulation of anthocyanin biosynthesis in plants. Agricultural Biotechnology 4:5−8 |
[42] |
Zhao M, Li J, Zhu L, Chang P, Li L, et al. 2019. Identification and characterization of MYB-bHLH-WD40 regulatory complex members controlling anthocyanidin biosynthesis in blueberry fruits development. Genes 10:496 doi: 10.3390/genes10070496 |
[43] |
Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, et al. 2011. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. Journal of Experimental Botany 62:2465−83 doi: 10.1093/jxb/erq442 |
[44] |
Baudry A, Heim MA, Dubreucq B, Caboche M, Weisshaar B, et al. 2004. T2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. The Plant Journal 39:366−80 doi: 10.1111/j.1365-313X.2004.02138.x |
[45] |
Li S. 2014. Transcriptional control of flavonoid biosynthesis. Plant Signaling & Behavior 9:e27522 doi: 10.4161/psb.27522 |
[46] |
Feller A, Hernandez JM, Grotewold E. 2006. An ACT-like domain participates in the dimerization of several plant basic-helix-loop-helix transcription factors. Journal of Biological Chemistry 281:28964−74 doi: 10.1074/jbc.M603262200 |