[1]

Saúco VG, Herrero M, Hormaza JI. 2013. Tropical and subtropical fruits. In Horticulture: Plants for People and Places, eds Dixon G, Aldous D. Dordrecht: Springer. Volume 1. pp. 123–57. doi: 10.1007/978-94-017-8578-5_5

[2]

Krishna KL, Paridhavi M, Patel JA. 2008. Review on nutritional, medicinal and pharmacological properties of papaya (Carica papaya linn.). Indian Journal of Natural Products and Resources 7:364−73

[3]

Evans EA, Ballen FH. 2012. Overview of global papaya production, trade, and consumption: FE913/FE913, 9/2012. EDIS 2012(9):1−6

[4]

Saeed F, Arshad MU, Pasha I, Naz R, Batool R, et al. 2014. Nutritional and phyto-therapeutic potential of papaya (Carica papaya Linn.): an overview. International Journal of Food Properties 17:1637−53

doi: 10.1080/10942912.2012.709210
[5]

Hofmeyr JDJ. 1938. Genetical studies of Carica papaya L. South African Journal of Science 35:300−04

[6]

Oziegbe M, Folorunso AE, Ajao DO. 2015. Inheritance of purple pigmentation in Carica papaya Linn. (caricaceae). International Journal of Plant Research 5:27−33

[7]

Grotewold E. 2006. The genetics and biochemistry of floral pigments. Annual Review of Plant Biology 57:761−80

doi: 10.1146/annurev.arplant.57.032905.105248
[8]

Iwashina T. 2015. Contribution to flower colors of flavonoids including anthocyanins: a review. Natural Product Communications 10:529−44

doi: 10.1177/1934578X1501000335
[9]

Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD. 2004. Pollination syndromes and floral specialization. Annual Review of Ecology, Evolution, and Systematics 12:375−403

doi: 10.1146/annurev.ecolsys.34.011802.132347
[10]

Steyn WJ, Wand SJE, Holcroft DM, Jacobs G. 2002. Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Phytologist 155:349−61

doi: 10.1046/j.1469-8137.2002.00482.x
[11]

He J, Giusti MM. 2010. Anthocyanins: natural colorants with health-promoting properties. Annual Review of Food Science and Technology 1:163−87

doi: 10.1146/annurev.food.080708.100754
[12]

Tsuda T. 2012. Dietary anthocyanin-rich plants: biochemical basis and recent progress in health benefits studies. Molecular Nutrition & Food Research 56:159−70

doi: 10.1002/mnfr.201100526
[13]

Kui LW, Bolitho K, Grafton K, Kortstee A, Karunairetnam S, et al. 2010. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biology 10:50

doi: 10.1186/1471-2229-10-50
[14]

Liu Y, Tikunov Y, Schouten RE, Marcelis LFM, Visser RGF, et al. 2018. Anthocyanin biosynthesis and degradation mechanisms in Solanaceous vegetables: a review. Frontiers in Chemistry 6:52

doi: 10.3389/fchem.2018.00052
[15]

Holton TA, Cornish EC. 1995. Genetics and biochemistry of anthocyanin biosynthesis. The Plant Cell 7:1071−83

doi: 10.2307/3870058
[16]

Dixon RA, Achnine L, Kota P, Liu CJ, Reddy MSS, et al. 2002. The phenylpropanoid pathway and plant defence—a genomics perspective. Molecular Plant Pathology 3:371−90

doi: 10.1046/j.1364-3703.2002.00131.x
[17]

Fraser CM, Chapple C. 2011. The phenylpropanoid pathway in Arabidopsis. The Arabidopsis Book 9:e0152

doi: 10.1199/tab.0152
[18]

Saito K, Yonekura-Sakakibara K, Nakabayashi R, Higashi Y, Yamazaki M, et al. 2013. The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity. Plant Physiology and Biochemistry 72:21−34

doi: 10.1016/j.plaphy.2013.02.001
[19]

Koes RE, Quattrocchio F, Mol JNM. 1994. The flavonoid biosynthetic pathway in plants: function and evolution. BioEssays 16:123−32

doi: 10.1002/bies.950160209
[20]

Xie XB, Li S, Zhang RF, Zhao J, Chen YC, et al. 2012. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples. Plant, Cell & Environment 35:1884−97

doi: 10.1111/j.1365-3040.2012.02523.x
[21]

Gonzalez A, Zhao M, Leavitt JM, Lloyd AM. 2008. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. The Plant Journal 53:814−27

doi: 10.1111/j.1365-313X.2007.03373.x
[22]

Xie Y, Tan H, Ma Z, Huang J. 2016. DELLA proteins promote anthocyanin biosynthesis via sequestering MYBL2 and JAZ suppressors of the MYB/bHLH/WD40 complex in Arabidopsis thaliana. Molecular Plant 9:711−21

doi: 10.1016/j.molp.2016.01.014
[23]

Albert NW, Davies KM, Lewis DH, Zhang H, Montefiori M, et al. 2014. A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in Eudicots. The Plant Cell 26:962−80

doi: 10.1105/tpc.113.122069
[24]

LaFountain AM, Yuan YW. 2021. Repressors of anthocyanin biosynthesis. New Phytologist 231:933−49

doi: 10.1111/nph.17397
[25]

Zhou H, Kui LW, Wang F, Espley RV, Ren F, et al. 2019. Activator-type R2R3-MYB genes induce a repressor-type R2R3-MYB gene to balance anthocyanin and proanthocyanidin accumulation. New Phytologist 221:1919−34

doi: 10.1111/nph.15486
[26]

Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, et al. 2013. QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. The Plant Journal 74:174−83

doi: 10.1111/tpj.12105
[27]

Michelmore RW, Paran I, Kesseli RV. 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences of the United States of America 88:9828−32

doi: 10.1073/pnas.88.21.9828
[28]

Wang Z, Gerstein M, Snyder M. 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics 10:57−63

doi: 10.1038/nrg2484
[29]

Wang Z, Yan L, Chen Y, Wang X, Huai D, et al. 2022. Detection of a major QTL and development of KASP markers for seed weight by combining QTL-seq, QTL-mapping and RNA-seq in peanut. Theoretical and Applied Genetics 135:1779−95

doi: 10.1007/s00122-022-04069-0
[30]

Lu H, Lin T, Klein J, Wang S, Qi J, et al. 2014. QTL-seq identifies an early flowering QTL located near Flowering Locus T in cucumber. Theoretical and Applied Genetics 127:1491−99

doi: 10.1007/s00122-014-2313-z
[31]

Illa-Berenguer E, Van Houten J, Huang Z, van der Knaap E. 2015. Rapid and reliable identification of tomato fruit weight and locule number loci by QTL-seq. Theoretical and Applied Genetics 128:1329−42

doi: 10.1007/s00122-015-2509-x
[32]

Davis MJ, White TL, Crane JH. 2004. Resistance to Papaya ringspot virus in transgenic papaya breeding lines. Proceedings of the Florida State Horticultural Society 117:241−45

[33]

Davis MJ, White TL, Crane JH. 2003. Papaya variety development in Florida. Annual Meeting of the Florida State Horticultural Society 116:4−6

[34]

Porebski S, Bailey LG, Baum BR. 1997. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reporter 15:8−15

doi: 10.1007/BF02772108
[35]

Andrews S. 2010. FASTQC. A quality control tool for high throughput sequence data. www.bioinformatics.babraham.ac.uk/projects/fastqc/

[36]

Bushnell B. 2014. BBMap: a fast, accurate, splice-aware aligner. LBNL Report #: LBNL-7065E. US: Lawrence Berkeley National Laboratory. https://escholarship.org/uc/item/1h3515gn

[37]

Yue J, VanBuren R, Liu J, Fang J, Zhang X, et al. 2022. SunUp and Sunset genomes revealed impact of particle bombardment mediated transformation and domestication history in papaya. Nature Genetics 54:715−24

doi: 10.1038/s41588-022-01068-1
[38]

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754−60

doi: 10.1093/bioinformatics/btp324
[39]

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25:2078−79

doi: 10.1093/bioinformatics/btp352
[40]

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, et al. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research 20:1297−303

doi: 10.1101/gr.107524.110
[41]

Mansfeld BN, Grumet R. 2018. QTLseqr: an R package for bulk segregant analysis with next-generation sequencing. The Plant Genome 11:180006

doi: 10.3835/plantgenome2018.01.0006
[42]

Liao Y, Smyth GK, Shi W. 2014. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923−30

doi: 10.1093/bioinformatics/btt656
[43]

Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology 37:907−15

doi: 10.1038/s41587-019-0201-4
[44]

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550

doi: 10.1186/s13059-014-0550-8
[45]

Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, et al. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674−76

doi: 10.1093/bioinformatics/bti610
[46]

Kolde R, Kolde MR. 2015. Package 'pheatmap'. R package 1:790

[47]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−08

doi: 10.1006/meth.2001.1262
[48]

Albert NW, Lewis DH, Zhang H, Schwinn KE, Jameson PE, et al. 2011. Members of an R2R3-MYB transcription factor family in Petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning. The Plant Journal 65:771−84

doi: 10.1111/j.1365-313X.2010.04465.x
[49]

Schwinn K, Venail J, Shang Y, Mackay S, Alm V, et al. 2006. A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. The Plant Cell 18:831−51

doi: 10.1105/tpc.105.039255
[50]

Yamagishi M, Shimoyamada Y, Nakatsuka T, Masuda K. 2010. Two R2R3-MYB genes, homologs of Petunia AN2, regulate anthocyanin biosyntheses in flower tepals, tepal spots and leaves of asiatic hybrid lily. Plant and Cell Physiology 51:463−74

doi: 10.1093/pcp/pcq011
[51]

Lachman J, Hamouz K, Šulc M, Orsák M, Pivec V, et al. 2009. Cultivar differences of total anthocyanins and anthocyanidins in red and purple-fleshed potatoes and their relation to antioxidant activity. Food Chemistry 114:836−43

doi: 10.1016/j.foodchem.2008.10.029
[52]

Wiczkowski W, Szawara-Nowak D, Topolska J. 2013. Red cabbage anthocyanins: profile, isolation, identification, and antioxidant activity. Food Research International 51:303−09

doi: 10.1016/j.foodres.2012.12.015
[53]

Kobayashi S, Goto-Yamamoto N, Hirochika H. 2004. Retrotransposon-induced mutations in grape skin color. Science 304:982

doi: 10.1126/science.1095011
[54]

Espley RV, Brendolise C, Chagné D, Kutty-Amma S, Green S, et al. 2009. Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples. The Plant Cell 21:168−83

doi: 10.1105/tpc.108.059329
[55]

Jin W, Wang H, Li M, Wang J, Yang Y, et al. 2016. The R2R3 MYB transcription factor PavMYB10.1 involves in anthocyanin biosynthesis and determines fruit skin colour in sweet cherry (Prunus avium L.). Plant Biotechnology Journal 14:2120−33

doi: 10.1111/pbi.12568
[56]

Jones CM, Mes P, Myers JR. 2003. Characterization and inheritance of the Anthocyanin fruit (Aft) tomato. Journal of Heredity 94:449−56

doi: 10.1093/jhered/esg093
[57]

Butelli E, Garcia-Lor A, Licciardello C, Las Casas G, Hill L, et al. 2017. Changes in anthocyanin production during domestication of Citrus. Plant Physiology 173:2225−42

doi: 10.1104/pp.16.01701
[58]

Song H, Yi H, Lee M, Han CT, Lee J, et al. 2018. Purple Brassica oleracea var. capitata F. rubra is due to the loss of BoMYBL2–1 expression. BMC Plant Biology 18:82

doi: 10.1186/s12870-018-1290-9
[59]

Zhang XH, Zheng XT, Sun BY, Peng CL, Chow WS. 2018. Over-expression of the CHS gene enhances resistance of Arabidopsis leaves to high light. Environmental and Experimental Botany 154:33−43

doi: 10.1016/j.envexpbot.2017.12.011
[60]

Li M, Cao YT, Ye SR, Irshad M, Pan TF, et al. 2017. Isolation of CHS gene from Brunfelsia acuminata flowers and its regulation in anthocyanin biosysthesis. Molecules 22:44

doi: 10.3390/molecules22010044
[61]

Ramsay NA, Glover BJ. 2005. MYB–bHLH–WD40 protein complex and the evolution of cellular diversity. Trends in Plant Science 10:63−70

doi: 10.1016/j.tplants.2004.12.011
[62]

Niu SS, Xu CJ, Zhang WS, Zhang B, Li X, et al. 2010. Coordinated regulation of anthocyanin biosynthesis in Chinese bayberry (Myrica rubra) fruit by a R2R3 MYB transcription factor. Planta 231:887−99

doi: 10.1007/s00425-009-1095-z
[63]

Chiu LW, Zhou X, Burke S, Wu X, Prior RL, et al. 2010. The purple cauliflower arises from activation of a MYB transcription factor. Plant Physiology 154:1470−80

doi: 10.1104/pp.110.164160