[1]

Gautam T, Dutta M, Jaiswal V, Zinta G, Gahlaut V, et al. 2022. Emerging roles of SWEET sugar transporters in plant development and abiotic stress responses. Cells 11(8):1303

doi: 10.3390/cells11081303
[2]

Jiang R, Wu L, Zeng J, Shah K, Zhang R, et al. 2023. Identification of HuSWEET family in pitaya (Hylocereus undatus) and key roles of HuSWEET12a and HuSWEET13d in sugar accumulation. International Journal of Molecular Sciences 24(16):12882

doi: 10.3390/ijms241612882
[3]

Chen LQ, Cheung LS, Feng L, Tanner W, Frommer WB. 2015. Transport of sugars. Annual Review of Biochemistry 84:865−94

doi: 10.1146/annurev-biochem-060614-033904
[4]

Durand M, Mainson D, Porcheron B, Maurousset L, Lemoine R, et al. 2018. Carbon source-sink relationship in Arabidopsis thaliana: the role of sucrose transporters. Planta 247:587−611

doi: 10.1007/s00425-017-2807-4
[5]

Liu N, Wei Z, Min X, Yang L, Zhang Y, et al. 2023. Genome-wide identification and expression analysis of the SWEET gene family in Annual alfalfa (Medicago polymorpha). Plants 12(10):1948

doi: 10.3390/plants12101948
[6]

Eom JS, Chen LQ, Sosso D, Julius BT, Lin IW, et al. 2015. SWEETs, transporters for intracellular and intercellular sugar translocation. Current Opinion in Plant Biology 25:53−62

doi: 10.1016/j.pbi.2015.04.005
[7]

Kang X, Huang S, Feng Y, Fu R, Tang F, et al. 2023. SWEET transporters and their potential roles in response to abiotic and biotic stresses in mulberry. Beverage Plant Research 3:6

doi: 10.48130/BPR-2023-0006
[8]

Ji J, Yang L, Fang Z, Zhang Y, Zhuang M, et al. 2022. Plant SWEET family of sugar transporters: structure, evolution and biological functions. Biomolecules 12(2):205

doi: 10.3390/biom12020205
[9]

Kryukov AA, Gorbunova AO, Kudriashova TR, Yakhin OI, Lubyanov AA, et al. 2021. Sugar transporters of the SWEET family and their role in arbuscular mycorrhiza. Vavilovskii Zhurnal Genet Selektsii 25(7):754−60

doi: 10.18699/VJ21.086
[10]

Li F, Wu B, Qin X, Yan L, Hao C, et al. 2014. Molecular cloning and expression analysis of the sucrose transporter gene family from Theobroma cacao L. Gene 546(2):336−41

doi: 10.1016/j.gene.2014.05.056
[11]

Aluri S, Büttner M. 2007. Identification and functional expression of the Arabidopsis thaliana vacuolar glucose transporter 1 and its role in seed germination and flowering. Proceedings of the National Academy of Sciences of the United States of America 104(7):2537−42

doi: 10.1073/pnas.0610278104
[12]

Butowt R, Granot D, Rodríguez-García MI. 2003. A putative plastidic glucose translocator is expressed in heterotrophic tissues that do not contain starch, during olive (Olea europea L.) fruit ripening. Plant and Cell Physiology 44(11):1152−61

doi: 10.1093/pcp/pcg149
[13]

Pommerrenig B, Müdsam C, Kischka D, Neuhaus HE. 2020. Treat and trick: common regulation and manipulation of sugar transporters during sink establishment by the plant and the pathogen. Journal of Experimental Botany 71(14):3930−40

doi: 10.1093/jxb/eraa168
[14]

Büttner M. 2007. The monosaccharide transporter(-like) gene family in Arabidopsis. FEBS Letters 581(12):2318−24

doi: 10.1016/j.febslet.2007.03.016
[15]

Liu T, Bao C, Ban Q, Wang C, Hu T, et al. 2022. Genome-wide identification of sugar transporter gene family in Brassicaceae crops and an expression analysis in the radish. BMC Plant Biology 22(1):245

doi: 10.1186/s12870-022-03629-2
[16]

Williams LE, Lemoine R, Sauer N. 2000. Sugar transporters in higher plants – a diversity of roles and complex regulation. Trends in Plant Science 5:283−90

doi: 10.1016/S1360-1385(00)01681-2
[17]

Yan N. 2013. Structural advances for the major facilitator superfamily (MFS) transporters. Trends in Biochemical Sciences 38:151−59

doi: 10.1016/j.tibs.2013.01.003
[18]

Andersen CG, Bavnhøj L, Pedersen BP. 2023. May the proton motive force be with you: a plant transporter review. Current Opinion in Structural Biology 79:102535

doi: 10.1016/j.sbi.2023.102535
[19]

Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML, et al. 2010. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468(7323):527−32

doi: 10.1038/nature09606
[20]

Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, et al. 2012. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335(6065):207−11

doi: 10.1126/science.1213351
[21]

Zhang XY, Wang XL, Wang XF, Xia GH, Pan QH, et al. 2006. A shift of Phloem unloading from symplasmic to apoplasmic pathway is involved in developmental onset of ripening in grape berry. Plant Physiology 142(1):220−32

doi: 10.1104/pp.106.081430
[22]

Chen C, Yuan Y, Zhang C, Li H, Ma F, et al. 2017. Sucrose phloem unloading follows an apoplastic pathway with high sucrose synthase in Actinidia fruit. Plant Science 255:40−50

doi: 10.1016/j.plantsci.2016.11.011
[23]

Bavnhøj L, Driller JH, Zuzic L, Stange AD, Schiøtt B, et al. 2023. Structure and sucrose binding mechanism of the plant SUC1 sucrose transporter. Nature Plants 9:938−50

doi: 10.1038/s41477-023-01421-0
[24]

Chen LQ. 2014. SWEET sugar transporters for phloem transport and pathogen nutrition. New Phytologist 201:1150−55

doi: 10.1111/nph.12445
[25]

Cox KL, Meng F, Wilkins KE, Li F, Wang P, et al. 2017. TAL effector driven induction of a SWEET gene confers susceptibility to bacterial blight of cotton. Nature Communications 8:15588

doi: 10.1038/ncomms15588
[26]

Kanno Y, Oikawa T, Chiba Y, Ishimaru Y, Shimizu T, et al. 2016. AtSWEET13 and AtSWEET14 regulate gibberellin-mediated physiological processes. Nature Communications 7:13245

doi: 10.1038/ncomms13245
[27]

Zhang W, Wang S, Yu F, Tang J, ShanX, et al. 2019. Genome-wide characterization and expression profiling of SWEET genes in cabbage (Brassica oleracea var. capitata L.) reveal their roles in chilling and clubroot disease responses. BMC Genomics 20:93

doi: 10.1186/s12864-019-5454-2
[28]

Lin IW, Sosso D, Chen LQ, Gase K, Kim SG, et al. 2014. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature 508(7497):546−49

doi: 10.1038/nature13082
[29]

Sosso D, Luo D, Li QB, Sasse J, Yang J, et al. 2015. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nature Genetics 47(12):1489−93

doi: 10.1038/ng.3422
[30]

Sun MX, Huang XY, Yang J, Guan YF, Yang ZN. 2013. Arabidopsis RPG1 is important for primexine deposition and functions redundantly with RPG2 for plant fertility at the late reproductive stage. Plant Reproduction 26(2):83−91

doi: 10.1007/s00497-012-0208-1
[31]

Zhou Y, Liu L, Huang W, Yuan M, Zhou F, et al. 2014. Overexpression of OsSWEET5 in rice causes growth retardation and precocious senescence. PLoS One 9(4):e94210

doi: 10.1371/journal.pone.0094210
[32]

Breia R, Conde A, Badim H, Fortes AM, Gerós H, et al. 2021. Plant SWEETs: from sugar transport to plant–pathogen interaction and more unexpected physiological roles. Plant Physiology 186:836−52

doi: 10.1093/plphys/kiab127
[33]

Ma L, Zhang D, Miao Q, Yang J, Xuan Y, et al. 2017. Essential role of sugar transporter OsSWEET11 during the early stage of rice grain filling. Plant and Cell Physiology 58(5):863−73

doi: 10.1093/pcp/pcx040
[34]

Faham S, Watanabe A, Besserer GM, Cascio D, Specht A, et al. 2008. The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science 321:810−14

doi: 10.1126/science.1160406
[35]

Patil G, Valliyodan B, Deshmukh R, Prince S, Nicander B, et al. 2015. Soybean (Glycine max) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis. BMC Genomics 16(1):520

doi: 10.1186/s12864-015-1730-y
[36]

Zheng QM, Tang Z, Xu Q, Deng XX. 2014. Isolation, phylogenetic relationship and expression profiling of sugar transporter genes in sweet orange (Citrus sinensis). Plant Cell, Tissue and Organ Culture 119:609−24

doi: 10.1007/s11240-014-0560-y
[37]

Chong J, Piron MC, Meyer S, Merdinoglu D, Bertsch C, et al. 2014. The SWEET family of sugar transporters in grapevine: VvSWEET4 is involved in the interaction with Botrytis cinerea. Journal of Experimental Botany 65(22):6589−601

doi: 10.1093/jxb/eru375
[38]

Yuan M, Wang S. 2013. Rice MtN3/saliva/SWEET family genes and their homologs in cellular organisms. Molecular Plant 6:665−74

doi: 10.1093/mp/sst035
[39]

Wei X, Liu F, Chen C, Ma F, Li M. 2014. The Malus domestica sugar transporter gene family: identifications based on genome and expression profiling related to the accumulation of fruit sugars. Frontiers in Plant Science 5:569

doi: 10.3389/fpls.2014.00569
[40]

Li B, Ali MM, Guo T, Alam SM, Gull S, et al. 2022. Genome-wide identification, in silico analysis and expression profiling of SWEET gene family in Loquat (Eriobotrya japonica Lindl.). Agriculture 12(9):1312

doi: 10.3390/agriculture12091312
[41]

Feng L, Frommer WB. 2015. Structure and function of SemiSWEET and SWEET sugar transporters. Trends in Biochemical Sciences 40:480−86

doi: 10.1016/j.tibs.2015.05.005
[42]

Xie H, Wang D, Qin Y, Ma A, Fu J, et al. 2019. Genome-wide identification and expression analysis of SWEET gene family in Litchi chinensis reveal the involvement of LcSWEET2a/3b in early seed development. BMC Plant Bioogy 19(1):499

doi: 10.1186/s12870-019-2120-4
[43]

Xu Y, Tao Y, Cheung LS, Fan C, Chen LQ, et al. 2014. Structures of bacterial homologues of SWEET transporters in two distinct conformations. Nature 515(7527):448−52

doi: 10.1038/nature13670
[44]

Zhang X, Wang S, Ren Y, Gan C, Li B, et al. 2022. Identification, analysis and gene cloning of the SWEET gene family provide insights into sugar transport in pomegranate (Punica granatum). International Journal of Molecular Sciences 23(5):2471

doi: 10.3390/ijms23052471
[45]

Arumuganathan K, Earle ED. 1991. Nuclear DNA content of some important plant species. Plant Molecular Biology Reporter 9:208−18

doi: 10.1007/BF02672069
[46]

Li X, He W, Fang J, Liang Y, Zhang H, et al. 2022. Genomic and transcriptomic-based analysis of agronomic traits in sugar beet (Beta vulgaris L.) pure line IMA1. Frontiers in Plant Science 13:1028885

doi: 10.3389/fpls.2022.1028885
[47]

Thalooth AT, Tawfik MM, Badre EA, Mohamed MH. 2019. Yield and quality response of some sugar beet (Beta vulgaris L.) varieties to humic acid and yeast application in newly reclaimed soil. Middle East Journal of Agriculture Research 8:56−65

[48]

Larson RL, Hill AL, Fenwick A, Kniss AR, Hanson LE, et al. 2006. Influence of glyphosate on Rhizoctonia and Fusarium root rot in sugar beet. Pest Management Science 62(12):1182−92

doi: 10.1002/ps.1297
[49]

Saleh MMS, Draz KAA, Mansour AM, Hussein MA, Zawrah MFM. 2011. Controlling the sugar beet fly Pegomyia mixta Vill. with entomopathogenic nematodes. Communications in Agricultural and Applied Biological Sciences 76:297−305

[50]

Strausbaugh CA, Eujayl IA. 2018. Influence of Beet necrotic yellow vein virus and freezing temperatures on sugar beet roots in storage. Plant Disease 102:932−37

doi: 10.1094/PDIS-10-17-1575-RE
[51]

Dohm JC, Minoche AE, Holtgräwe D, Capella-Gutiérrez S, Zakrzewski F, et al. 2014. The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature 505:546−49

doi: 10.1038/nature12817
[52]

Dohm JC, Lange C, Holtgräwe D, Sörensen TR, Borchardt D, et al. 2012. Palaeohexaploid ancestry for caryophyllales inferred from extensive gene-based physical and genetic mapping of the sugar beet genome (Beta vulgaris). The Plant Journal 70(3):528−40

doi: 10.1111/j.1365-313X.2011.04898.x
[53]

Holtgräwe D, Sörensen TR, Viehöver P, Schneider J, Schulz B, et al. 2014. Reliable in silico identification of sequence polymorphisms and their application for extending the genetic map of sugar beet (Beta vulgaris). PLoS One 9(10):e110113

doi: 10.1371/journal.pone.0110113
[54]

Zou C, Liu D, Wu P, Wang Y, Gai Z, et al. 2020. Transcriptome analysis of sugar beet (Beta vulgaris L.) in response to alkaline stress. Plant Molecular Biology 102(6):645−57

doi: 10.1007/s11103-020-00971-7
[55]

Stracke R, Holtgräwe D, Schneider J, Pucker B, Sörensen TR, et al. 2014. Genome-wide identification and characterisation of R2R3-MYB genes in sugar beet (Beta vulgaris). BMC Plant Biology 14:249

doi: 10.1186/s12870-014-0249-8
[56]

Funk A, Galewski P, McGrath JM. 2018. Nucleotide-binding resistance gene signatures in sugar beet, insights from a new reference genome. The Plant Journal 95:659−71

doi: 10.1111/tpj.13977
[57]

Wu GQ, Wang JL, Li SJ. 2019. Genome-wide identification of Na+/H+ antiporter (NHX) genes in sugar beet (Beta vulgaris L.) and their regulated expression under salt stress. Genes 10(5):401

doi: 10.3390/genes10050401
[58]

Bolser D, Staines DM, Pritchard E, Kersey P. 2016. Ensembl plants: integrating tools for visualizing, mining, and analyzing plant genomic data. In Plant Bioinformatics, ed. Edwards D. New York, NY: Humana Press. Vol 1374. pp. 115−40. doi: 10.1007/978-1-4939-3167-5_6

[59]

Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, et al. 2005. Protein identification and analysis tools on the ExPASy server. In The Proteomics Protocols Handbook, ed. Walker JM. Totowa, NJ: Humana Press. pp. 571–607. doi: 10.1385/1-59259-890-0:571

[60]

Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, et al. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Molecular Systems Biology 7:539

doi: 10.1038/msb.2011.75
[61]

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32:268−74

doi: 10.1093/molbev/msu300
[62]

Letunic I, Bork P. 2019. Interactive Tree of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Research 47(W1):W256−W259

doi: 10.1093/nar/gkz239
[63]

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35(6):1547−49

doi: 10.1093/molbev/msy096
[64]

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202

doi: 10.1016/j.molp.2020.06.009
[65]

Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols 10(6):845−58

doi: 10.1038/nprot.2015.053
[66]

Krogh A, Larsson B, von Heijne G, Sonnhammer ELL. 2001. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. Journal of Molecular Biology 305(3):567−80

doi: 10.1006/jmbi.2000.4315
[67]

Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, et al. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research 30(1):325−27

doi: 10.1093/nar/30.1.325
[68]

Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, et al. 2019. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research 47(D1):D607−D613

doi: 10.1093/nar/gky1131
[69]

Yaghobi M, Heidari P. 2023. Genome-wide analysis of aquaporin gene family in Triticum turgidum and its expression profile in response to salt stress. Genes 14:202

doi: 10.3390/genes14010202
[70]

Heidari P, Puresmaeli F, Vafaee Y, Ahmadizadeh M, Ensani M, et al. 2023. Comparative analysis of phospholipase D (PLD) gene family in Camelina sativa and Brassica napus and its responses in camelina seedlings under salt stress. Agronomy 13(10):2616

doi: 10.3390/agronomy13102616
[71]

Klemens PAW, Patzke K, Deitmer J, Spinner L, Le Hir R, et al. 2013. Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis. Plant Physiology 163(3):1338−52

doi: 10.1104/pp.113.224972
[72]

Li H, Li X, Xuan Y, Jiang J, Wei Y, et al. 2018. Genome wide identification and expression profiling of SWEET genes family reveals its role during plasmodiophora brassicae-induced formation of clubroot in Brassica rapa. Frontiers in Plant Science 9:207

doi: 10.3389/fpls.2018.00207
[73]

Feng CY, Han JX, Han XX, Jiang J. 2015. Genome-wide identification, phylogeny, and expression analysis of the SWEET gene family in tomato. Gene 573(2):261−72

doi: 10.1016/j.gene.2015.07.055
[74]

Li J, Qin M, Qiao X, Cheng Y, Li X, et al. 2017. A new insight into the evolution and functional divergence of SWEET transporters in Chinese white pear (Pyrus bretschneideri). Plant and Cell Physiology 58(4):839−50

doi: 10.1093/pcp/pcx025
[75]

Jian H, Lu K, Yang B, Wang T, Zhang L, et al. 2016. Genome-wide analysis and expression profiling of the SUC and SWEET gene families of sucrose transporters in oilseed rape (Brassica napus L.). Frontiers in Plant Science 7:1464

doi: 10.3389/fpls.2016.01464
[76]

Jiang S, Balan B, de A BAssis R, Sagawa CHD, Wan X, et al. 2020. Genome-wide profiling and phylogenetic analysis of the SWEET sugar transporter gene family in walnut and their lack of responsiveness to Xanthomonas arboricola pv. juglandis infection. International Journal of Molecular Sciences 21(4):1251

doi: 10.3390/ijms21041251
[77]

Nie P, Xu G, Yu B, Lyu D, Xue X, et al. 2022. Genome-wide identification and expression profiling reveal the potential functions of the SWEET gene family during the sink organ development period in apple (Malus × domestica Borkh.). Agronomy 12(8):1747

doi: 10.3390/agronomy12081747
[78]

Gao Y, Wang ZY, Kumar V, Xu XF, Yuan DP, et al. 2018. Genome-wide identification of the SWEET gene family in wheat. Gene 642:284−92

doi: 10.1016/j.gene.2017.11.044
[79]

Hu B, Wu H, Huang W, Song J, Zhou Y, et al. 2019. SWEET gene family in Medicago truncatula: genome-wide identification, expression and substrate specificity analysis. Plants 8(9):338

doi: 10.3390/plants8090338
[80]

Yang C, Zhao X, Luo Z, Wang L, Liu M. 2023. Genome-wide identification and expression profile analysis of SWEET genes in Chinese jujube. PeerJ 11:e14704

doi: 10.7717/peerj.14704
[81]

Miao H, Sun P, Liu Q, Miao Y, Liu J, et al. 2017. Genome-wide analyses of SWEET family proteins reveal involvement in fruit development and abiotic/biotic stress responses in banana. Scientific Reports 7(1):3536

doi: 10.1038/s41598-017-03872-w
[82]

Faraji S, Filiz E, Kazemitabar SK, Vannozzi A, Palumbo F, et al. 2020. The AP2/ERF gene family in Triticum durum: genome-wide identification and expression analysis under drought and salinity stresses. Genes 11(12):1464

doi: 10.3390/genes11121464
[83]

Hashemipetroudi SH, Arab M, Heidari P, Kuhlmann M. 2023. Genome-wide analysis of the laccase (LAC) gene family in Aeluropus littoralis: a focus on identification, evolution and expression patterns in response to abiotic stresses and ABA treatment. Frontiers in Plant Science 14:1112354

doi: 10.3389/fpls.2023.1112354
[84]

Puresmaeli F, Heidari P, Lawson S. 2023. Insights into the sulfate transporter gene family and its expression patterns in durum wheat seedlings under salinity. Genes 14:333

doi: 10.3390/genes14020333
[85]

Xuan YH, Hu YB, Chen LQ, Sosso D, Ducat DC, et al. 2013. Functional role of oligomerization for bacterial and plant SWEET sugar transporter family. Proceedings of the National Academy of Sciences of the United States of America 110(39):E3685−E3694

doi: 10.1073/pnas.1311244110
[86]

Von Heijne G. 2007. The membrane protein universe: what’s out there and why bother? Journal of Internal Medicine 261:543−57

doi: 10.1111/j.1365-2796.2007.01792.x
[87]

Overington JP, Al-Lazikani B, Hopkins AL. 2006. How many drug targets are there? Nature Reviews Drug Discovery 5:993−96

doi: 10.1038/nrd2199
[88]

Deber CM, Therien AG. 2002. Putting the β-breaks on membrane protein misfolding. Nature Structural Biology 9:318−19

doi: 10.1038/nsb0502-318