[1]

Katerji N, Van Hoorn JW, Hamdy A, Mastrorilli M. 2003. Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods. Agricultural Water Management 62:37−66

doi: 10.1016/S0378-3774(03)00005-2
[2]

Yu Z, Duan X, Luo L, Dai S, Ding Z, et al. 2020. How plant hormones mediate salt stress responses. Trends in Plant Science 25:1117−30

doi: 10.1016/j.tplants.2020.06.008
[3]

Deinlein U, Stephan AB, Horie T, Luo W, Xu G, et al. 2014. Plant salt-tolerance mechanisms. Trends in Plant Science 19:371−79

doi: 10.1016/j.tplants.2014.02.001
[4]

Cheng J, Yan J, Zhang T, Liu J, Guo H. 2008. Growth responses of four warm season turfgrasses to long-term salt stress. Acta Prataculturae Sinica 17:30−36

doi: 10.3321/j.issn:1004-5759.2008.05.005
[5]

Fan R, Zhou Q, Zhou B, Jiang H. 2012. Effects of salinization stress on growth and the antioxidant system of tall fescue. Acta Prataculturae Sinica 21:112−17

[6]

Wu X, Guo Z, Chen S, Zhuang L. 2019. Advances in research on the tolerance of seashore paspalum (Paspalums vaginatium). Acta Agrestia Sinica 27:1117−25

doi: 10.11733/j.issn.1007-0435.2019.05.002
[7]

Silveira JAG, Júnior JM, Silva EN, Ferreira-Silva SL, Aragão RM, et al. 2012. Salt resistance in two cashew species is associated with accumulation of organic and inorganic solutes. Acta Physiologiae Plantarum 34:1629−37

doi: 10.1007/s11738-012-0957-3
[8]

Wang Q, Liu Q, Gao Y, Liu X. 2017. Review on the mechanisms of the response to salinity-alkalinity stress in plants. Acta Ecologiea Sinica 37:5565−77

[9]

Ku YS, Sintaha M, Cheung MY, Lam HM. 2018. Plant hormone signaling crosstalks between biotic and abiotic stress responses. International Journal of Molecular Sciences 19:3206

doi: 10.3390/ijms19103206
[10]

Ali A, Maggio A, Bressan RA, Yun DJ. 2019. Role and functional differences of HKT1-type transporters in plants under salt stress. International Journal of Molecular Sciences 20:1059

doi: 10.3390/ijms20051059
[11]

Zhu JK. 2016. Abiotic stress signaling and responses in plants. Cell 167:313−24

doi: 10.1016/j.cell.2016.08.029
[12]

Heidari M, Sarani S. 2012. Growth, biochemical components and ion content of Chamomile (Matricaria chamomilla L.) under salinity stress and iron deficiency. Journal of the Saudi Society of Agricultural Sciences 11:37−42

doi: 10.1016/j.jssas.2011.05.002
[13]

Chen W, Zhao L, Liu L, Li X, Li Y, et al. 2021. Iron deficiency-induced transcription factors bHLH38/100/101 negatively modulate flowering time in Arabidopsis thaliana. Plant Science 308:110929

doi: 10.1016/j.plantsci.2021.110929
[14]

Bloem E, Haneklaus S, Haensch R, Schnug E. 2017. EDTA application on agricultural soils affects microelement uptake of plants. Science of The Total Environment 577:166−73

doi: 10.1016/j.scitotenv.2016.10.153
[15]

Briat JF, Dubos C, Gaymard F. 2015. Iron nutrition, biomass production, and plant product quality. Trends in Plant Science 20:33−40

doi: 10.1016/j.tplants.2014.07.005
[16]

Halliwell B, Gutteridge JMC. 1992. Biologically relevant metal ion-dependent hydroxyl radical generation an update. FEBS Letters 307:108−12

doi: 10.1016/0014-5793(92)80911-y
[17]

Kim SA, LaCroix IS, Gerber SA, Guerinot ML. 2019. The iron deficiency response in Arabidopsis thaliana requires the phosphorylated transcription factor URI. Proceedings of the National Academy of Sciences of the United States of America 116:24933−42

doi: 10.1073/pnas.1916892116
[18]

Zhao S, Zhang Q, Liu M, Zhou H, Ma C, et al. 2021. Regulation of plant responses to salt stress. International Journal of Molecular Sciences 22:4609

doi: 10.3390/ijms22094609
[19]

Rabhi M, Barhoumi Z, Ksouri R, Abdelly C, Gharsalli M. 2007. Interactive effects of salinity and iron deficiency in Medicago ciliaris. Comptes Rendus Biologies 330:779−88

doi: 10.1016/j.crvi.2007.08.007
[20]

Wu D, Shen Q, Cai S, Chen ZH, Dai F, et al. 2013. Ionomic responses and correlations between elements and metabolites under salt stress in wild and cultivated barley. Plant and Cell Physiology 54:1976−88

doi: 10.1093/pcp/pct134
[21]

Tripathi DK, Singh S, Gaur S, Singh S, Yadav V, et al. 2017. Acquisition and homeostasis of iron in higher plants and their probable role in abiotic stress tolerance. Frontiers in Environmental Science 5:86

doi: 10.3389/fenvs.2017.00086
[22]

Scandalios JG. 1990. Response of plant antioxidant defense genes to environmental stress. Advances in Genetics 28:1−41

doi: 10.1016/s0065-2660(08)60522-2
[23]

Sharma P, Jha AB, Dubey RS, Pessarakli M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany 2012:217037

doi: 10.1155/2012/217037
[24]

Ghasemi S, Khoshgoftarmanesh AH, Afyuni M, Hadadzadeh H. 2014. Iron (II) -amino acid chelates alleviate salt-stress induced oxidative damages on tomato grown in nutrient solution culture. Scientia Horticulturae 165:91−98

doi: 10.1016/j.scienta.2013.10.037
[25]

Hoagland DR, Arnon DI. 1950. The water culture method for growing plants without soil. The College of Agriculture University of California, Barkeley. pp. 1−32

[26]

Hiscox JD, Israelstam GF. 1979. A method for the extraction of chlorophyll from leaf tissue without maceration using dimethyl sulfoxide. Canadian Journal of Botany 57:1332−34

doi: 10.1139/b79-163
[27]

Blum A, Ebercon A. 1981. Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Science 21:43−47

doi: 10.2135/cropsci1981.0011183X002100010013x
[28]

Clemensson-Lindell A, Persson H. 1995. Fine-root vitality in a norway spruce stand subjected to various nutrient supplies. Plant and Soil 168:167−72

doi: 10.1007/BF00029325
[29]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−08

doi: 10.1006/meth.2001.1262
[30]

Shen Z, Liu Y, Chen H. 1998. Effects of chelators EDTA and DTPA on the uptake of zinc, copper, manganese and iron by hyperaccumulator Thlaspi caerulescens. Acta Phytophysiologica Sinica 24:340−46

[31]

Chen P, Yan K, Shao H, Zhao S. 2013. Physiological mechanisms for high salt tolerance in wild soybean (Glycine soja) from Yellow River Delta, China: photosynthesis, osmotic regulation, ion flux and antioxidant capacity. PLoS One 8:e83227

doi: 10.1371/journal.pone.0083227
[32]

Hakim MA, Juraimi AS, Hanafi MM, Ismail MR, Rafil MY, et al. 2014. The effect of salinity on chlorophyll, proline and mineral nutrients in common weeds of coastal rice fields in Malaysia. Journal of Environmental Biology 35:855−64

[33]

Parida AK, Das AB. 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety 60:324−49

doi: 10.1016/j.ecoenv.2004.06.010
[34]

Zahra N, Al Hinai MS, Hafeez MB, Rehman A, Wahid A, et al. 2022. Regulation of photosynthesis under salt stress and associated tolerance mechanisms. Plant Physiology and Biochemistry 178:55−69

doi: 10.1016/j.plaphy.2022.03.003
[35]

Yan H, Hu X, Li F. 2012. Leaf photosynthesis, chlorophyll fluorescence, ion content and free amino acids in Caragana korshinskii Kom exposed to NaCl stress. Acta Physiologiae Plantarum 34:2285−95

doi: 10.1007/s11738-012-1029-4
[36]

Zhao R, An L, Song D, Li M, Qiao L, et al. 2021. Detection of chlorophyll fluorescence parameters of potato leaves based on continuous wavelet transform and spectral analysis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 259:119768

doi: 10.1016/j.saa.2021.119768
[37]

Liu Z, Zhang H, Yang L, Liu T, Di W. 2014. Growth, and cationic absorption, transportation and allocation of Elaeagnus angustifolia seedlings under NaCl stress. Acta Ecologica Sinica 34:326−36

doi: 10.5846/stxb201303270530
[38]

Cheng T, Li H, Wu H, Liu Z, Wu X, et al. 2015. Comparison on osmotica accumulation of different salt-tolerant plants under salt stress. Forest Research 28:826−32

doi: 10.3969/j.issn.1001-1498.2015.06.010
[39]

Knight H, Trewavas AJ, Knight MR. 1997. Calcium signalling in Arabidopsis thaliana responding to drought and salinity. The Plant Journal 12:1067−78

doi: 10.1046/j.1365-313x
[40]

Stephan AB, Schroeder JI. 2014. Plant salt stress status is transmitted systemically via propagating calcium waves. Proceedings of the National Academy of Sciences of the United States of America 111:6126−27

doi: 10.1073/pnas.1404895111
[41]

Choi WG, Toyota M, Kim SH, Hilleary R, Gilroy S. 2014. Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. Proceedings of the National Academy of Sciences of the United States of America 111:6497−502

doi: 10.1073/pnas.1319955111
[42]

Chen ZC, Peng WT, Li J, Liao H. 2018. Functional dissection and transport mechanism of magnesium in plants. Seminars in Cell & Developmental Biology 74:142−52

doi: 10.1016/j.semcdb.2017.08.005
[43]

Li J, Jia Y, Dong R, Huang R, Liu P, et al. 2019. Advances in the mechanisms of plant tolerance to manganese toxicity. International Journal of Molecular Sciences 20:5096

doi: 10.3390/ijms20205096
[44]

He J, Rössner N, Hoang MTT, Alejandro S, Peiter E. 2021. Transport, functions, and interaction of calcium and manganese in plant organellar compartments. Plant Physiology 187:1940−72

doi: 10.1093/plphys/kiab122
[45]

Park HJ, Kim WY, Yun DJ. 2016. A New insight of salt stress signaling in plant. Molecules and Cells 39:447−59

doi: 10.14348/molcells.2016.0083
[46]

Mansour MMF. 2014. The plasma membrane transport systems and adaptation to salinity. Journal of Plant Physiology 171:1787−800

doi: 10.1016/j.jplph.2014.08.016
[47]

Hasegawa PM. 2013. Sodium (Na+) homeostasis and salt tolerance of plants. Environmental and Experimental Botany 92:19−31

doi: 10.1016/j.envexpbot.2013.03.001
[48]

Maathuis FJ, Ahmad I, Patishtan J. 2014. Regulation of Na+ fluxes in plants. Frontiers in Plant Science 5:467

doi: 10.3389/fpls.2014.00467
[49]

Bassil E, Zhang S, Gong H, Tajima H, Blumwald E. 2019. Cation specificity of vacuolar NHX-type cation/H+ antiporters. Plant Physiology 179:616−29

doi: 10.1104/pp.18.01103
[50]

Dutta D, Esmaili M, Overduin M, Fliegel L. 2020. Expression and detergent free purification and reconstitution of the plant plasma membrane Na+/H+ antiporter SOS1 overexpressed in Pichia pastoris. Biochimica et Biophysica Acta (BBA) - Biomembranes 1862:183111

doi: 10.1016/j.bbamem.2019.183111
[51]

Martínez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu JK, et al. 2007. Conservation of the salt overly sensitive pathway in rice. Plant Physiology 143:1001−12

doi: 10.1104/pp.106.092635
[52]

Cho JH, Sim SC, Kim KN. 2021. Calcium sensor SlCBL4 associates with SlCIPK24 protein kinase and mediates salt tolerance in Solanum lycopersicum. Plants 10:2173

doi: 10.3390/plants10102173
[53]

Sondergaard TE, Schulz A, Palmgren MG. 2004. Energization of transport processes in plants. roles of the plasma membrane H+-ATPase. Plant Physiology 136:2475−82

doi: 10.1104/pp.104.048231
[54]

Elkahoui S, Carvajal M, Ghrir R, Limam F. 2005. Study of the involvement of osmotic adjustment and H+-ATPase activity in the resistance of Catharanthus roseus suspension cells to salt stress. Plant Cell, Tissue and Organ Culture 80:287−94

doi: 10.1007/s11240-004-1085-6
[55]

Zhang M, Chen Q, Zhou P, Zhang Q, Fang Y. 2018. NaCl-induced changes in vacuolar H+-ATPase expression and vacuolar membrane lipid composition of two shrub willow clones differing in their response to salinity. Plant Growth Regulation 86:445−53

doi: 10.1007/s10725-018-0442-0
[56]

Ravari HH, Kavousi HR, Mohammadi F, Pourseyedi S. 2020. Partial cloning, characterization, and analysis of expression and activity of plasma membrane H+-ATPase in kallar grass [Leptochloa fusca (L.) Kunth] under salt stress. Biologia Futura 71:231−40

doi: 10.1007/s42977-020-00019-3
[57]

Ponce-Pineda IG, Carmona-Salazar L, Saucedo-García M, Cano-Ramírez D, Morales-Cedillo F, et al. 2021. MPK6 kinase regulates plasma membrane H+-ATPase activity in cold acclimation. International Journal of Molecular Sciences 22:6338

doi: 10.3390/ijms22126338
[58]

Horie T, Brodsky DE, Costa A, Kaneko T, Lo Schiavo F, et al. 2011. K+ transport by the OsHKT2;4 transporter from rice with atypical Na+ transport properties and competition in permeation of K+ over Mg2+ and Ca2+ ions. Plant Physiology 156:1493−507

doi: 10.1104/pp.110.168047
[59]

Riedelsberger J, Miller JK, Valdebenito-Maturana B, Piñeros MA, González W, et al. 2021. Plant HKT channels: an updated view on structure, function and gene regulation. International Journal of Molecular Sciences 22:1892

doi: 10.3390/ijms22041892
[60]

Rubio F, Gassmann W, Schroeder JI. 1995. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270:1660−63

doi: 10.1126/science.270.5242.1660
[61]

Kronzucker HJ, Britto DT. 2011. Sodium transport in plants: a critical review. New Phytologist 189:54−81

doi: 10.1111/j.1469-8137.2010.03540.x
[62]

Davenport RJ, Muñoz-Mayor A, Jha D, Essah PA, Rus A, et al. 2007. The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant, Cell & Environment 30:497−507

doi: 10.1111/j.1365-3040.2007.01637.x
[63]

Sunarpi, Horie T, Motoda J, Kubo M, Yang H, et al. 2005. Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. The Plant Journal 44:928−38

doi: 10.1111/j.1365-313X.2005.02595.x
[64]

Berthomieu P, Conéjéro G, Nublat A, Brackenbury WJ, Lambert C, et al. 2003. Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. The EMBO Journal 22:2004−14

doi: 10.1093/emboj/cdg207