[1]

Ojo AO, de Smidt O. 2023. Microbial composition, bioactive compounds, potential benefits and risks associated with kombucha: a concise review. Fermentation 9:472

doi: 10.3390/fermentation9050472
[2]

Martínez Leal J, Valenzuela Suárez L, Jayabalan R, Huerta Oros J, Escalante-Aburto A. 2018. A review on health benefits of kombucha nutritional compounds and metabolites. CyTA - Journal of Food 16:390−99

doi: 10.1080/19476337.2017.1410499
[3]

Watawana MI, Jayawardena N, Gunawardhana CB, Waisundara VY. 2015. Health, wellness, and safety aspects of the consumption of kombucha. Journal of Chemistry 2015:591869

doi: 10.1155/2015/591869
[4]

Villarreal-Soto SA, Beaufort S, Bouajila J, Souchard JP, Taillandier P. 2018. Understanding kombucha tea fermentation: a review. Journal of Food Science 83:580−88

doi: 10.1111/1750-3841.14068
[5]

Jayabalan R, Malbaša RV, Lončar ES, Vitas JS, Sathishkumar M. 2014. A review on kombucha tea—microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Comprehensive Reviews in Food Science and Food Safety 13:538−50

doi: 10.1111/1541-4337.12073
[6]

Bull MJ, Plummer NT. 2014. Part 1: the human gut microbiome in health and disease. Integrative Medicine 13: 17−22

[7]

Chakravorty S, Bhattacharya S, Chatzinotas A, Chakraborty W, Bhattacharya D, et al. 2016. Kombucha tea fermentation: microbial and biochemical dynamics. International Journal of Food Microbiology 220:63−72

doi: 10.1016/j.ijfoodmicro.2015.12.015
[8]

Wang B, Rutherfurd-Markwick K, Zhang XX, Mutukumira AN. 2022. Kombucha: production and microbiological research. Foods 11:3456

doi: 10.3390/foods11213456
[9]

Değirmencioğlu N, Yıldız E, Sahan Y, Güldas M, Gürbüz O. 2021. Impact of tea leaves types on antioxidant properties and bioaccessibility of kombucha. Journal of Food Science and Technology 58:2304−12

doi: 10.1007/s13197-020-04741-7
[10]

Assad M, Ashaolu TJ, Khalifa I, Baky MH, Farag MA. 2023. Dissecting the role of microorganisms in tea production of different fermentation levels: a multifaceted review of their action mechanisms, quality attributes and future perspectives. World Journal of Microbiology and Biotechnology 39:265

doi: 10.1007/s11274-023-03701-5
[11]

Zheng Y, Liu Y, Han S, He Y, Liu R, et al. 2024. Comprehensive evaluation of quality and bioactivity of kombucha from six major tea types in China. International Journal of Gastronomy and Food Science 36:100910

doi: 10.1016/j.ijgfs.2024.100910
[12]

Wu SX, Xiong RG, Cheng J, Xu XY, Tang GY, et al. 2023. Preparation, antioxidant activities and bioactive components of kombucha beverages from golden-flower tea (Camellia petelotii) and honeysuckle-flower tea (Lonicera japonica). Foods 12:3010

doi: 10.3390/foods12163010
[13]

Saimaiti A, Huang SY, Xiong RG, Wu SX, Zhou DD, et al. 2022. Antioxidant capacities and polyphenol contents of kombucha beverages based on vine tea and sweet tea. Antioxidants 11:1655

doi: 10.3390/antiox11091655
[14]

Xiong RG, Wu SX, Cheng J, Saimaiti A, Liu Q, et al. 2023. Antioxidant activities, phenolic compounds, and sensory acceptability of kombucha-fermented beverages from bamboo leaf and mulberry leaf. Antioxidants 12:1573

doi: 10.3390/antiox12081573
[15]

Tang W, Yuan M, Li Z, Lin Q, Zhen Y, et al. 2022. Polyphenol-rich Liupao tea extract prevents high-fat diet-induced MAFLD by modulating the gut microbiota. Nutrients 14:4930

doi: 10.3390/nu14224930
[16]

Marsh AJ, O'Sullivan O, Hill C, Ross RP, Cotter PD. 2014. Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples. Food Microbiology 38:171−78

doi: 10.1016/j.fm.2013.09.003
[17]

Wu Z, Teng J, Huang L, Xia N, Wei B. 2015. Stability, antioxidant activity and in vitro bile acid-binding of green, black and dark tea polyphenols during simulated in vitro gastrointestinal digestion. RSC Advances 5:92089−95

doi: 10.1039/c5ra18784b
[18]

Ding Q, Zhang B, Zheng W, Chen X, Zhang J, et al. 2019. Liupao tea extract alleviates diabetes mellitus and modulates gut microbiota in rats induced by streptozotocin and high-fat, high-sugar diet. Biomedicine & Pharmacotherapy 118:109262

doi: 10.1016/j.biopha.2019.109262
[19]

Field CJ, Johnson I, Pratt VC. 2000. Glutamine and arginine: immunonutrients for improved health. Medicine & Science in Sports & Exercise 32:S377−S388

doi: 10.1097/00005768-200007001-00002
[20]

Cornelis MC, Kacprowski T, Menni C, Gustafsson S, Pivin E, et al. 2016. Genome-wide association study of caffeine metabolites provides new insights to caffeine metabolism and dietary caffeine-consumption behavior. Human Molecular Genetics 25:5472−82

doi: 10.1093/hmg/ddw334
[21]

Mahabadi N, Bhusal A, Banks SW. 2024. Riboflavin deficiency. US: StatPearls Publishing.

[22]

Mosegaard S, Dipace G, Bross P, Carlsen J, Gregersen N, et al. 2020. Riboflavin deficiency—implications for general human health and inborn errors of metabolism. International Journal of Molecular Sciences 21:3847

doi: 10.3390/ijms21113847
[23]

Stach K, Stach W, Augoff K. 2021. Vitamin B6 in health and disease. Nutrients 13:3229

doi: 10.3390/nu13093229
[24]

Madeo F, Eisenberg T, Pietrocola F, Kroemer G. 2018. Spermidine in health and disease. Science 359:eaan2788

doi: 10.1126/science.aan2788
[25]

Wang D, Qin L, Jing C, Wang G, Zhou H, et al. 2024. Biologically active isoquinoline alkaloids covering 2019–2022. Bioorganic Chemistry 145:107252

doi: 10.1016/j.bioorg.2024.107252
[26]

Shuai H, Myronovskyi M, Rosenkränzer B, Paulus C, Nadmid S, et al. 2022. Novel biosynthetic route to the isoquinoline scaffold. ACS Chemical Biology 17:598−608

doi: 10.1021/acschembio.1c00869
[27]

Boylan PM, Abdalla M, Bissell B, Malesker MA, Santibañez M, et al. 2023. Theophylline for the management of respiratory disorders in adults in the 21st century: a scoping review from the American College of Clinical Pharmacy Pulmonary Practice and Research Network. Pharmacotherapy 43:963−90

doi: 10.1002/phar.2843
[28]

Tsao R. 2010. Chemistry and biochemistry of dietary polyphenols. Nutrients 2:1231−46

doi: 10.3390/nu2121231
[29]

Di Lorenzo C, Colombo F, Biella S, Stockley C, Restani P. 2021. Polyphenols and human health: the role of bioavailability. Nutrients 13:273

doi: 10.3390/nu13010273
[30]

Sankaranarayanan R, Valiveti CK, Dachineni R, Kumar DR, Lick T, et al. 2020. Aspirin metabolites 2,3-DHBA and 2,5-DHBA inhibit cancer cell growth: implications in colorectal cancer prevention. Molecular Medicine Reports 21:20−34

doi: 10.3892/mmr.2019.10822
[31]

Adak A, Khan MR. 2019. An insight into gut microbiota and its functionalities. Cellular and Molecular Life Sciences 76:473−93

doi: 10.1007/s00018-018-2943-4
[32]

Ozdal T, Sela DA, Xiao J, Boyacioglu D, Chen F, et al. 2016. The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients 8:78

doi: 10.3390/nu8020078
[33]

García-Díez E, López-Oliva ME, Pérez-Jiménez J, Martín MA, Ramos S. 2022. Metabolic regulation of (−)-epicatechin and the colonic metabolite 2,3-dihydroxybenzoic acid on the glucose uptake, lipid accumulation and insulin signalling in cardiac H9c2 cells. Food & Function 13:5602−15

doi: 10.1039/d2fo00182a
[34]

Suiter C, Singha SK, Khalili R, Shariat-Madar Z. 2018. Free fatty acids: circulating contributors of metabolic syndrome. Cardiovascular & Hematological Agents in Medicinal Chemistry 16:20−34

doi: 10.2174/1871525716666180528100002
[35]

Prasad C. 1995. Bioactive cyclic dipeptides. Peptides 16:151−64

doi: 10.1016/0196-9781(94)00017-z
[36]

Gu Y, Qin X, Zhou G, Wang C, Mu C, et al. 2022. Lactobacillus rhamnosus GG supernatant promotes intestinal mucin production through regulating 5-HT4R and gut microbiota. Food & Function 13:12144−55

doi: 10.1039/d2fo01900k
[37]

Ferreira-Halder CV, Faria AVS, de Sousa Faria A. 2017. Action and function of Faecalibacterium prausnitzii in health and disease. Best Practice & Research Clinical Gastroenterology 31:643−48

doi: 10.1016/j.bpg.2017.09.011
[38]

Wu F, Guo X, Zhang J, Zhang M, Ou Z, et al. 2017. Phascolarctobacterium faecium abundant colonization in human gastrointestinal tract. Experimental and Therapeutic Medicine 14:3122−26

doi: 10.3892/etm.2017.4878
[39]

Trischler R, Roth J, Sorbara MT, Schlegel X, Müller V. 2022. A functional Wood-Ljungdahl pathway devoid of a formate dehydrogenase in the gut acetogens Blautia wexlerae, Blautia luti and beyond. Environmental Microbiology 24:3111−23

doi: 10.1111/1462-2920.16029
[40]

Chang CJ, Lin TL, Tsai YL, Wu TR, Lai WF, et al. 2019. Next generation probiotics in disease amelioration. Journal of Food and Drug Analysis 27:615−22

doi: 10.1016/j.jfda.2018.12.011
[41]

Gade A, Kumar MS. 2023. Gut microbial metabolites of dietary polyphenols and their potential role in human health and diseases. Journal of Physiology and Biochemistry 79:695−718

doi: 10.1007/s13105-023-00981-1
[42]

Srivastava R, Bhargava A, Singh RK. 2007. Synthesis and antimicrobial activity of some novel nucleoside analogues of adenosine and 1,3-dideazaadenosine. Bioorganic & Medicinal Chemistry Letters 17:6239−44

doi: 10.1016/j.bmcl.2007.09.028
[43]

Niu G, Tan H. 2015. Nucleoside antibiotics: biosynthesis, regulation, and biotechnology. Trends in Microbiology 23:110−19

doi: 10.1016/j.tim.2014.10.007
[44]

Zhou B, Ma C, Xia T, Li X, Zheng C, et al. 2020. Isolation, characterization and application of theophylline-degrading Aspergillus fungi. Microbial Cell Factories 19:72

doi: 10.1186/s12934-020-01333-0