[1] |
De Rybel B, Audenaert D, Beeckman T, Kepinski S. 2009. The past, present, and future of chemical biology in auxin research. ACS Chemical Biology 4:987−98 doi: 10.1021/cb9001624 |
[2] |
Friml J. 2022. Fourteen Stations of Auxin. Cold Spring Harbor Perspectives in Biology 14:a039859 doi: 10.1101/cshperspect.a039859 |
[3] |
Ding T, Zhang F, Wang J, Wang F, Liu J, et al. 2021. Cell-type action specificity of auxin on Arabidopsis root growth. Plant Journal 106:928−41 doi: 10.1111/tpj.15208 |
[4] |
Tan C, Li S, Song J, Zheng X, Zheng H, et al. 2024. 3, 4-Dichlorophenylacetic acid acts as an auxin analog and induces beneficial effects in various crops. Communications Biology 7:161 doi: 10.1038/s42003-024-05848-9 |
[5] |
Marhavý P, Vanstraelen M, De Rybel B, Ding Z, Bennett MJ, et al. 2013. Auxin reflux between the endodermis and pericycle promotes lateral root initiation. The EMBO Journal 32:149−58 doi: 10.1038/emboj.2012.303 |
[6] |
Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, et al. 2005. Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. The Plant Cell 17:444−63 doi: 10.1105/tpc.104.028316 |
[7] |
Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M. 2007. ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. The Plant Cell 19:118−30 doi: 10.1105/tpc.106.047761 |
[8] |
Chapman EJ, Estelle M. 2009. Mechanism of auxin-regulated gene expression in plants. Annual Review of Genetics 43:265−85 doi: 10.1146/annurev-genet-102108-134148 |
[9] |
Tang LP, Zhang XS, Su YH. 2020. Regulation of cell reprogramming by auxin during somatic embryogenesis. aBIOTECH 1:185−93 doi: 10.1007/s42994-020-00029-8 |
[10] |
Karami O, de Jong H, Somovilla VJ, Villanueva Acosta B, Sugiarta AB, et al. 2023. Structure-activity relationship of 2,4-D correlates auxinic activity with the induction of somatic embryogenesis in Arabidopsis thaliana. Plant Journal 116:1355−69 doi: 10.1111/tpj.16430 |
[11] |
Grossmann K. 2010. Auxin herbicides: current status of mechanism and mode of action. Pest Management Science 66:113−20 doi: 10.1002/ps.1860 |
[12] |
Todd OE, Figueiredo MRA, Morran S, Soni N, Preston C, et al. 2020. Synthetic auxin herbicides: finding the lock and key to weed resistance. Plant Science 300:110631 doi: 10.1016/j.plantsci.2020.110631 |
[13] |
Quareshy M, Prusinska J, Li J, Napier R. 2018. A cheminformatics review of auxins as herbicides. Journal of Experimental Botany 69:265−75 doi: 10.1093/jxb/erx258 |
[14] |
Parry G, Calderon-Villalobos LI, Prigge M, Peret B, Dharmasiri S, et al. 2009. Complex regulation of the TIR1/AFB family of auxin receptors. Proceedings of the National Academy of Sciences of the United States of America 106:22540−45 doi: 10.1073/pnas.0911967106 |
[15] |
Pazmiño DM, Rodríguez-Serrano M, Romero-Puertas MC, Archilla-Ruiz A, Del Río LA, et al. 2011. Differential response of young and adult leaves to herbicide 2,4-dichlorophenoxyacetic acid in pea plants: role of reactive oxygen species. Plant, Cell & Environment 34:1874−89 doi: 10.1111/j.1365-3040.2011.02383.x |
[16] |
Song Y. 2014. Insight into the mode of action of 2,4-dichlorophenoxyacetic acid (2,4-D) as an herbicide. Journal of Integrative Plant Biology 56:106−13 doi: 10.1111/jipb.12131 |
[17] |
Teale W, Palme K. 2018. Naphthylphthalamic acid and the mechanism of polar auxin transport. Journal of Experimental Botany 69:303−12 doi: 10.1093/jxb/erx323 |
[18] |
Bromilow RH. 2004. Paraquat and sustainable agriculture. Pest Management Science 60:340−49 doi: 10.1002/ps.823 |
[19] |
Farrington JA, Ebert M, Land EJ, Fletcher K. 1973. Bipyridylium quaternary salts and related compounds. V. Pulse radiolysis studies of the reaction of paraquat radical with oxygen. Implications for the mode of action of bipyridyl herbicides. Biochimica et Biophysica Acta (BBA) - Bioenergetics 314:372−81 doi: 10.1016/0005-2728(73)90121- |
[20] |
Nazish T, Huang YJ, Zhang J, Xia JQ, Alfatih A, et al. 2022. Understanding paraquat resistance mechanisms in Arabidopsis thaliana to facilitate the development of paraquat-resistant crops. Plant Communications 3:100321 doi: 10.1016/j.xplc.2022.100321 |
[21] |
Bai F, Jia Y, Yang C, Li T, Wu Z, et al. 2019. Multiple physiological response analyses aid the understanding of sensitivity variation between Microcystis aeruginosa and Chlorella sp. under paraquat exposures. Environmental Sciences Europe 31:83 doi: 10.1186/s12302-019-0255-4 |
[22] |
An J, Shen X, Ma Q, Yang C, Liu S, et al. 2014. Transcriptome profiling to discover putative genes associated with paraquat resistance in goosegrass (Eleusine indica L.). PLoS One 9:e99940 doi: 10.1371/journal.pone.0099940 |
[23] |
Hawkes TR. 2014. Mechanisms of resistance to paraquat in plants. Pest Management Science 70:1316−23 doi: 10.1002/ps.3699 |
[24] |
Yu Q, Cairns A, Powles SB. 2004. Paraquat resistance in a population of Lolium rigidum. Functional Plant Biology 31:247−54 doi: 10.1071/FP03234 |
[25] |
Fujita M, Fujita Y, Iuchi S, Yamada K, Kobayashi Y, et al. 2012. Natural variation in a polyamine transporter determines paraquat tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 109:6343−47 doi: 10.1073/pnas.1121406109 |
[26] |
Jóri B, Soós V, Szegő D, Páldi E, Szigeti Z, et al. 2007. Role of transporters in paraquat resistance of horseweed Conyza canadensis (L.) Cronq. Pesticide Biochemistry and Physiology 88:57−65 doi: 10.1016/j.pestbp.2006.08.013 |
[27] |
da Silva DRO, de Aguiar ACM, Basso CJ, Muraro DS. 2021. Application time affects synthetic auxins herbicides in tank-mixture with paraquat on hairy fleabane control. Revista Ceres 68:194−200 doi: 10.1590/0034-737x202168030005 |
[28] |
Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, et al. 1999. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99:463−72 doi: 10.1016/S0092-8674(00)81535-4 |
[29] |
Overvoorde P, Fukaki H, Beeckman T. 2010. Auxin control of root development. Cold Spring Harbor Perspectives in Biology 2:a001537 doi: 10.1101/cshperspect.a001537 |
[30] |
Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang H, et al. 2003. Dissecting Arabidopsis lateral root development. Trends in Plant Science 8:165−71 doi: 10.1016/S1360-1385(03)00051-7 |
[31] |
Liu H, Luo Q, Tan C, Song J, Zhang T, et al. 2023. Biosynthesis- and transport-mediated dynamic auxin distribution during seed development controls seed size in Arabidopsis. Plant Journal 113:1259−77 doi: 10.1111/tpj.16109 |
[32] |
Pilet PE, Saugy M. 1987. Effect on root growth of endogenous and applied IAA and ABA: a critical reexamination. Plant Physiology 83:33−8 doi: 10.1104/pp.83.1.33 |
[33] |
Adamowski M, Friml J. 2015. PIN-dependent auxin transport: action, regulation, and evolution. The Plant Cell 27:20−32 doi: 10.1105/tpc.114.134874 |
[34] |
Swarup R, Bhosale R. 2019. Developmental roles of AUX1/LAX auxin influx carriers in plants. Frontiers in Plant Science 10:1306 doi: 10.3389/fpls.2019.01306 |
[35] |
Benina M, Ribeiro DM, Gechev TS, Mueller-Roeber B, Schippers JHM. 2015. A cell type-specific view on the translation of mRNAs from ROS-responsive genes upon paraquat treatment of Arabidopsis thaliana leaves. Plant, Cell & Environment 38:349−63 doi: 10.1111/pce.12355 |
[36] |
Shen T, Jia N, Wei S, Xu W, Lv T, et al. 2022. Mitochondrial HSC70-1 regulates polar auxin transport through ROS homeostasis in Arabidopsis roots. Antioxidants 11:2035 doi: 10.3390/antiox11102035 |