| [1] |
Han B, Zheng R, Zeng H, Wang S, Sun K, et al. 2024. Cancer incidence and mortality in China, 2022. Journal of the National Cancer Center 4:47−53 doi: 10.1016/j.jncc.2024.01.006 |
| [2] |
Joshi SS, Badgwell BD. 2021. Current treatment and recent progress in gastric cancer. CA: A Cancer Journal for Clinicians 71:264−79 doi: 10.3322/caac.21657 |
| [3] |
Peng X, Gong F, Chen Y, Jiang Y, Liu J, et al. 2014. Autophagy promotes paclitaxel resistance of cervical cancer cells: involvement of Warburg effect activated hypoxia-induced factor 1-α-mediated signaling. Cell Death & Disease 5:e1367 doi: 10.1038/cddis.2014.297 |
| [4] |
Bhattacharya B, Mohd Omar MF, Soong R. 2016. The Warburg effect and drug resistance. British Journal of Pharmacology 173:970−79 doi: 10.1111/bph.13422 |
| [5] |
Song H, Wang L, Liu HL, Wu XB, Wang HS, et al. 2011. Tissue metabolomic fingerprinting reveals metabolic disorders associated with human gastric cancer morbidity. Oncology Reports 26:431−38 doi: 10.3892/or.2011.1302 |
| [6] |
Ikeda A, Nishiumi S, Shinohara M, Yoshie T, Hatano N, et al. 2012. Serum metabolomics as a novel diagnostic approach for gastrointestinal cancer. Biomedical Chromatography 26:548−58 doi: 10.1002/bmc.1671 |
| [7] |
Bhattacharya B, Low SHH, Soh C, Kamal Mustapa N, Beloueche-Babari M, et al. 2014. Increased drug resistance is associated with reduced glucose levels and an enhanced glycolysis phenotype. British Journal of Pharmacology 171:3255−67 doi: 10.1111/bph.12668 |
| [8] |
Buller CL, Loberg RD, Fan MH, Zhu Q, Park JL, et al. 2008. A GSK-3/TSC2/mTOR pathway regulates glucose uptake and GLUT1 glucose transporter expression. American Journal of Physiology Cell Physiology 295:C836−C843 doi: 10.1152/ajpcell.00554.2007 |
| [9] |
Ma J, Liu W, Guo H, Li S, Cao W, et al. 2014. N-myc downstream-regulated gene 2 expression is associated with glucose transport and correlated with prognosis in breast carcinoma. Breast Cancer Research 16:R27 doi: 10.1186/bcr3628 |
| [10] |
Qiu H, Jackson AL, Kilgore JE, Zhong Y, Chan LL, et al. 2015. JQ1 suppresses tumor growth through downregulating LDHA in ovarian cancer. Oncotarget 6:6915−30 doi: 10.18632/oncotarget.3126 |
| [11] |
Wu H, Li Z, Yang P, Zhang L, Fan Y, Li Z. 2014. PKM2 depletion induces the compensation of glutaminolysis through beta-catenin/c-Myc pathway in tumor cells. Cellular Signalling 26:2397−405 doi: 10.1016/j.cellsig.2014.07.024 |
| [12] |
Cairns RA, Harris IS, Mak TW. 2011. Regulation of cancer cell metabolism. Nature Reviews Cancer 11:85−95 doi: 10.1038/nrc2981 |
| [13] |
Bian X, Liu R, Meng Y, Xing D, Xu D, et al. 2021. Lipid metabolism and cancer. The Journal of Experimental Medicine 218(1):e20201606 doi: 10.1084/jem.20201606 |
| [14] |
Snaebjornsson MT, Janaki-Raman S, Schulze A. 2020. Greasing the wheels of the cancer machine: the role of lipid metabolism in cancer. Cell Metabolism 31:62−76 doi: 10.1016/j.cmet.2019.11.010 |
| [15] |
Chen J, Cui L, Lu S, Xu S. 2024. Amino acid metabolism in tumor biology and therapy. Cell Death & Disease 15:42 doi: 10.1038/s41419-024-06435-w |
| [16] |
Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, et al. 2010. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376:687−97 doi: 10.1016/S0140-6736(10)61121-X |
| [17] |
Li N, Qiu M, Zhang Y, Yang M, Lu L, et al. 2024. A randomized phase 2 study of HLX22 plus trastuzumab biosimilar HLX02 and XELOX as first-line therapy for HER2-positive advanced gastric cancer. Med 5:1255−65.e2 doi: 10.1016/j.medj.2024.06.004 |
| [18] |
Gomez-Martin C, Plaza JC, Pazo-Cid R, Salud A, Pons F, et al. 2013. Level of HER2 gene amplification predicts response and overall survival in HER2-positive advanced gastric cancer treated with trastuzumab. Journal of Clinical Oncology 31:4445−52 doi: 10.1200/JCO.2013.48.9070 |
| [19] |
Yao X, He Z, Qin C, Zhang P, Sui C, et al. 2022. Inhibition of PFKFB3 in HER2-positive gastric cancer improves sensitivity to trastuzumab by inducing tumour vessel normalisation. British Journal of Cancer 127:811−23 doi: 10.1038/s41416-022-01834-2 |
| [20] |
Chang J, Wang Q, Bhetuwal A, Liu W. 2020. Metabolic pathways underlying GATA6 regulating Trastuzumab resistance in gastric cancer cells based on untargeted metabolomics. International Journal of Medical Sciences 17:3146−64 doi: 10.7150/ijms.50563 |
| [21] |
Dhup S, Dadhich RK, Porporato PE, Sonveaux P. 2012. Multiple biological activities of lactic acid in cancer: influences on tumor growth, angiogenesis and metastasis. Current Pharmaceutical Design 18:1319−30 doi: 10.2174/138161212799504902 |
| [22] |
Shen YC, Ou DL, Hsu C, Lin KL, Chang CY, et al. 2013. Activating oxidative phosphorylation by a pyruvate dehydrogenase kinase inhibitor overcomes sorafenib resistance of hepatocellular carcinoma. British Journal of Cancer 108:72−81 doi: 10.1038/bjc.2012.559 |
| [23] |
Zhao Y, Liu H, Liu Z, Ding Y, Ledoux SP, et al. 2011. Overcoming trastuzumab resistance in breast cancer by targeting dysregulated glucose metabolism. Cancer Research 71:4585−97 doi: 10.1158/0008-5472.CAN-11-0127 |
| [24] |
Raez LE, Papadopoulos K, Ricart AD, Chiorean EG, Dipaola RS, et al. 2013. A phase I dose-escalation trial of 2-deoxy-D-glucose alone or combined with docetaxel in patients with advanced solid tumors. Cancer Chemotherapy and Pharmacology 71:523−30 doi: 10.1007/s00280-012-2045-1 |
| [25] |
Manerba M, Di Ianni L, Fiume L, Roberti M, Recanatini M, et al. 2015. Lactate dehydrogenase inhibitors sensitize lymphoma cells to cisplatin without enhancing the drug effects on immortalized normal lymphocytes. European Journal of Pharmaceutical Sciences 74:95−102 doi: 10.1016/j.ejps.2015.04.022 |
| [26] |
Kumar V, Ramnarayanan K, Sundar R, Padmanabhan N, Srivastava S, et al. 2022. Single-cell atlas of lineage states, tumor microenvironment, and subtype-specific expression programs in gastric cancer. Cancer Discovery 12:670−91 doi: 10.1158/2159-8290.CD-21-0683 |
| [27] |
Piro G, Carbone C, Cataldo I, Di Nicolantonio F, Giacopuzzi S, et al. 2016. An FGFR3 autocrine loop sustains acquired resistance to trastuzumab in gastric cancer patients. Clinical Cancer Research 22:6164−75 doi: 10.1158/1078-0432.CCR-16-0178 |
| [28] |
Zhang T, Sun L, Hao Y, Suo C, Shen S, et al. 2022. ENO1 suppresses cancer cell ferroptosis by degrading the mRNA of iron regulatory protein 1. Nature Cancer 3:75−89 doi: 10.1038/s43018-021-00299-1 |
| [29] |
Volz K. 2008. The functional duality of iron regulatory protein 1. Current Opinion in Structural Biology 18:106−11 doi: 10.1016/j.sbi.2007.12.010 |
| [30] |
Wang L, Wang H. 2023. The putative role of ferroptosis in gastric cancer: a review. European Journal of Cancer Prevention 32:575−83 doi: 10.1097/CEJ.0000000000000817 |
| [31] |
Fu QF, Liu Y, Fan Y, Hua SN, Qu HY, et al. 2015. Alpha-enolase promotes cell glycolysis, growth, migration, and invasion in non-small cell lung cancer through FAK-mediated PI3K/AKT pathway. Journal of Hematology & Oncology 8:22 doi: 10.1186/s13045-015-0117-5 |
| [32] |
Zhan P, Zhao S, Yan H, Yin C, Xiao Y, et al. 2017. α-enolase promotes tumorigenesis and metastasis via regulating AMPK/mTOR pathway in colorectal cancer. Molecular Carcinogenesis 56:1427−37 doi: 10.1002/mc.22603 |
| [33] |
Capello M, Ferri-Borgogno S, Riganti C, Chattaragada MS, Principe M, et al. 2016. Targeting the Warburg effect in cancer cells through ENO1 knockdown rescues oxidative phosphorylation and induces growth arrest. Oncotarget 7:5598−612 doi: 10.18632/oncotarget.6798 |
| [34] |
Lin YH, Satani N, Hammoudi N, Yan VC, Barekatain Y, et al. 2020. An enolase inhibitor for the targeted treatment of ENO1-deleted cancers. Nature Metabolism 2:1413−26 doi: 10.1038/s42255-020-00313-3 |
| [35] |
Song K, Rajasekaran N, Chelakkot C, Lee HS, Paek SM, et al. 2021. Macrosphelide A exhibits a specific anti-cancer effect by simultaneously inactivating ENO1, ALDOA, and FH. Pharmaceuticals 14:1060 doi: 10.3390/ph14101060 |
| [36] |
Wang J, Huang Q, Hu X, Zhang S, Jiang Y, et al. 2022. Disrupting circadian rhythm via the PER1-HK2 axis reverses trastuzumab resistance in gastric cancer. Cancer Research 82:1503−17 doi: 10.1158/0008-5472.CAN-21-1820 |
| [37] |
Feng J, Li J, Wu L, Yu Q, Ji J, et al. 2020. Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma. Journal of Experimental & Clinical Cancer Research 39:126 doi: 10.1186/s13046-020-01629-4 |
| [38] |
Infantino V, Santarsiero A, Convertini P, Todisco S, Iacobazzi V. 2021. Cancer cell metabolism in hypoxia: role of HIF-1 as key regulator and therapeutic target. International Journal of Molecular Sciences 22:5703 doi: 10.3390/ijms22115703 |
| [39] |
Wang ZH, Peng WB, Zhang P, Yang XP, Zhou Q. 2021. Lactate in the tumour microenvironment: From immune modulation to therapy. EBioMedicine 73:103627 doi: 10.1016/j.ebiom.2021.103627 |
| [40] |
Kumagai S, Koyama S, Itahashi K, Tanegashima T, Lin YT, et al. 2022. Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments. Cancer Cell 40:201−218.e9 doi: 10.1016/j.ccell.2022.01.001 |
| [41] |
Janjigian YY, Kawazoe A, Bai Y, Xu J, Lonardi S, et al. 2023. Pembrolizumab plus trastuzumab and chemotherapy for HER2-positive gastric or gastro-oesophageal junction adenocarcinoma: interim analyses from the phase 3 KEYNOTE-811 randomised placebo-controlled trial. Lancet 402:2197−208 doi: 10.1016/S0140-6736(23)02033-0 |
| [42] |
Keam SJ. 2020. Trastuzumab deruxtecan: first approval. Drugs 80:501−8 doi: 10.1007/s40265-020-01281-4 |