[1]

Cui G, Zhao X, Liu S, Sun F, Zhang C, et al. 2017. Beneficial effects of melatonin in overcoming drought stress in wheat seedlings. Plant Physiology and Biochemistry 118:138−49

doi: 10.1016/j.plaphy.2017.06.014
[2]

Naeem M, Naeem MS, Ahmad R, Ahmad R, Ashraf MY, et al. 2018. Improving drought tolerance in maize by foliar application of boron: water status, antioxidative defense and photosynthetic capacity. Archives of Agronomy and Soil Science 64:626−39

doi: 10.1080/03650340.2017.1370541
[3]

Hassan MJ, Qi H, Cheng B, Hussain S, Peng Y, et al. 2022. Enhanced adaptability to limited water supply regulated by diethyl aminoethyl hexanoate (DA-6) associated with lipidomic reprogramming in two white clover genotypes. Frontiers in Plant Science 13:879331

doi: 10.3389/fpls.2022.879331
[4]

Katuwal KB, Yang H, Huang B. 2023. Evaluation of phenotypic and photosynthetic indices to detect water stress in perennial grass species using hyperspectral, multispectral and chlorophyll fluorescence imaging. Grass Research 3:16

doi: 10.48130/GR-2023-0016
[5]

Kamran M, Wennan S, Ahmad I, Meng X, Cui W, et al. 2018. Application of paclobutrazol affect maize grain yield by regulating root morphological and physiological characteristics under a semi-arid region. Scientific Reports 8:4818

doi: 10.1038/s41598-018-23166-z
[6]

Hassan MJ, Najeeb A, Min Z, Raza MA, Ali U, et al. 2024. Diethyl aminoethyl hexanoate reprogramed accumulations of organic metabolites associated with water balance and metabolic homeostasis in white clover under drought stress. Frontiers in Plant Science 15:1430752

doi: 10.3389/fpls.2024.1430752
[7]

Jiang Y, Jiang Y, He S, Zhang H, Pan C. 2012. Dissipation of diethyl aminoethyl hexanoate (DA-6) residues in pakchoi, cotton crops and soil. Bulletin of Environmental Contamination and Toxicology 88:533−37

doi: 10.1007/s00128-012-0565-3
[8]

Qi R, Gu W, Zhang J, Hao L, Zhang M, et al. 2013. Exogenous diethyl aminoethyl hexanoate enhanced growth of corn and soybean seedlings through altered photosynthesis and phytohormone. Australian Journal of Crop Science 7:2021−28

[9]

Hassan MJ, Zhou M, Ling Y, Li Z. 2024. Diethyl aminoethyl hexanoate ameliorates salt tolerance associated with ion transport, osmotic adjustment, and metabolite reprograming in white clover. BMC Plant Biology 24:950

doi: 10.1186/s12870-024-05657-6
[10]

Fu XJ, Maimaiti AS, Mou HM, Yang Q, Liu GJ. 2011. Hexanoic acid 2-(diethylamino) ethyl ester enhances chilling tolerance in strawberry seedlings by impact on photosynthesis and antioxidants. Biologia Plantarum 55:793

doi: 10.1007/s10535-011-0190-8
[11]

Li Z, Zhang R, Zhang H. 2018. Effects of plant growth regulators (DA-6 and 6-BA) and EDDS chelator on phytoextraction and detoxification of cadmium by Amaranthus hybridus Linn. International Journal of Phytoremediation 20:1121−28

doi: 10.1080/15226514.2017.1365348
[12]

Zhang C, He P, Li Y, Li Y, Yao H, et al. 2016. Exogenous diethyl aminoethyl hexanoate, a plant growth regulator, highly improved the salinity tolerance of important medicinal plant Cassia obtusifolia L. Journal of Plant Growth Regulation 35:330−44

doi: 10.1007/s00344-015-9536-3
[13]

Hassan MJ, Geng W, Zeng W, Raza MA, Khan I, et al. 2021. Diethyl aminoethyl hexanoate priming ameliorates seed germination via involvement in hormonal changes, osmotic adjustment, and dehydrins accumulation in white clover under drought stress. Frontiers in Plant Science 12:709187

doi: 10.3389/fpls.2021.709187
[14]

Li Z, Zhou M, Qi H, Cheng B, Hassan MJ. 2024. Foliar application of diethyl aminoethyl hexanoate (DA-6) alleviated summer bentgrass decline and heat damage to creeping bentgrass. Crop Science 64:1039−50

doi: 10.1002/csc2.21182
[15]

Zhao S, Zeng W, Li Z, Peng Y. 2020. Mannose regulates water balance, leaf senescence, and genes related to stress tolerance in white clover under osmotic stress. Biologia Plantarum 64:406−16

doi: 10.32615/bp.2020.017
[16]

Bota J, Medrano H, Flexas J. 2004. Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress? New Phytologist 162:671−81

doi: 10.1111/j.1469-8137.2004.01056.x
[17]

Ma X, Zhang J, Burgess P, Rossi S, Huang B. 2018. Interactive effects of melatonin and cytokinin on alleviating drought-induced leaf senescence in creeping bentgrass (Agrostis stolonifera). Environmental and Experimental Botany 145:1−11

doi: 10.1016/j.envexpbot.2017.10.010
[18]

Yang Y, Xia J, Fang X, Jia H, Wang X, et al. 2023. Drought stress in 'Shine Muscat'grapevine: consequences and a novel mitigation strategy–5-aminolevulinic acid. Frontiers in Plant Science 14:1129114

doi: 10.3389/fpls.2023.1129114
[19]

Gill SS, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48:909−30

doi: 10.1016/j.plaphy.2010.08.016
[20]

Foyer CH, Noctor G. 2016. Stress-triggered redox signalling: what's in pROSpect? Plant, Cell & Environment 39:951−64

doi: 10.1111/pce.12621
[21]

Wang Y, Sun G, Wang J, Cao W, Liang J, et al. 2006. Relationships among MDA content, plasma membrane permeability and the chlorophyll fluorescence parameters of Puccinellia tenuiflora seedlings under NaCl stress. Acta Ecologica Sinica 26:122−29

doi: 10.3321/j.issn:1000-0933.2006.01.018
[22]

Hasanuzzaman M, Bhuyan MHMB, Zulfiqar F, Raza A, Mohsin SM, et al. 2020. Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9:681

doi: 10.3390/antiox9080681
[23]

Huang X, Rao G, Peng X, Xue Y, Hu H, et al. 2023. Effect of plant growth regulators DA-6 and COS on drought tolerance of pineapple through bromelain and oxidative stress. BMC Plant Biology 23:180

doi: 10.1186/s12870-023-04200-3
[24]

Tan M, Hassan MJ, Peng Y, Feng G, Huang L, et al. 2022. Polyamines metabolism interacts with γ-aminobutyric acid, proline and nitrogen metabolisms to affect drought tolerance of creeping bentgrass. International Journal of Molecular Sciences 23:2779

doi: 10.3390/ijms23052779
[25]

Han YJ, Cho KC, Hwang OJ, Choi YS, Shin AY, et al. 2012. Overexpression of an Arabidopsis β-glucosidase gene enhances drought resistance with dwarf phenotype in creeping bentgrass. Plant Cell Reports 31:1677−86

doi: 10.1007/s00299-012-1280-6
[26]

Hoagland D, Arnon D. 1950. The water-culture method for growing plants without soil. California Agricultural Experiment Station 347:1−32

[27]

Barrs H, Weatherley P. 1962. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Australian Journal of Biological Sciences 15:413−28

doi: 10.1071/BI9620413
[28]

Blum A. 1989. Osmotic adjustment and growth of barley genotypes under drought stress. Crop Science 29:230−33

doi: 10.2135/cropsci1989.0011183X002900010052x
[29]

Barnes JD, Balaguer L, Manrique E, Elvira S, Davison AW. 1992. A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environmental and Experimental Botany 32:85−100

doi: 10.1016/0098-8472(92)90034-Y
[30]

Blum A, Ebercon A. 1981. Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Science 21:43−47

doi: 10.2135/cropsci1981.0011183X002100010013x
[31]

Elstner EF, Heupel A. 1976. Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Analytical Biochemistry 70:616−20

doi: 10.1016/0003-2697(76)90488-7
[32]

Velikova V, Yordanov I, Edreva A. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science 151:59−66

doi: 10.1016/S0168-9452(99)00197-1
[33]

Dhindsa RS, Plumb-Dhindsa P, Thorpe TA. 1981. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany 32:93−101

doi: 10.1093/jxb/32.1.93
[34]

Giannopolitis CN, Ries SK. 1977. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology 59:309−14

doi: 10.1104/pp.59.2.309
[35]

Change B, Maehly AC. 1955. Assay of catalases and peroxidase. Methods in Enzymology 2:764−75

doi: 10.1016/S0076-6879(55)02300-8
[36]

Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in Spinach chloroplasts. Plant and Cell Physiology 22:867−80

doi: 10.1093/oxfordjournals.pcp.a076232
[37]

Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248−54

doi: 10.1016/0003-2697(76)90527-3
[38]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−08

doi: 10.1006/meth.2001.1262
[39]

Xu Z, Zhou G, Shimizu H. 2010. Plant responses to drought and rewatering. Plant Signaling & Behavior 5:649−54

doi: 10.4161/psb.5.6.11398
[40]

Tang M, Li Z, Luo L, Cheng B, Zhang Y, et al. 2020. Nitric oxide signal, nitrogen metabolism, and water balance affected by γ-aminobutyric acid (GABA) in relation to enhanced tolerance to water stress in creeping bentgrass. International Journal of Molecular Sciences 21:7460

doi: 10.3390/ijms21207460
[41]

Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, et al. 2002. How plants cope with water stress in the field? Photosynthesis and growth. Annals of Botany 89:907−16

doi: 10.1093/aob/mcf105
[42]

Arnao MB, Hernández-Ruiz J. 2009. Protective effect of melatonin against chlorophyll degradation during the senescence of barley leaves. Journal of Pineal Research 46:58−63

doi: 10.1111/j.1600-079X.2008.00625.x
[43]

Masuda T, Fujita Y. 2008. Regulation and evolution of chlorophyll metabolism. Photochemical & Photobiological Sciences 7:1131−49

doi: 10.1039/b807210h
[44]

Bollivar DW. 2006. Recent advances in chlorophyll biosynthesis. Photosynthesis Research 89:1−22

doi: 10.1007/s11120-006-9076-6
[45]

Dalal VK, Tripathy BC. 2012. Modulation of chlorophyll biosynthesis by water stress in rice seedlings during chloroplast biogenesis. Plant, Cell & Environment 35:1685−703

doi: 10.1111/j.1365-3040.2012.02520.x
[46]

Kumar Tewari A, Charan Tripathy B. 1998. Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat. Plant Physiology 117:851−58

doi: 10.1104/pp.117.3.851
[47]

Li Z, Peng D, Zhang X, Peng Y, Chen M, et al. 2017. Na+ induces the tolerance to water stress in white clover associated with osmotic adjustment and aquaporins-mediated water transport and balance in root and leaf. Environmental and Experimental Botany 144:11−24

doi: 10.1016/j.envexpbot.2017.09.011
[48]

Zhang K, Xie H, Wen J, Zhang J, Wang ZY, et al. 2024. Leaf senescence in forage and turf grass: progress and prospects. Grass Research 4:e004

doi: 10.48130/grares-0024-0002
[49]

Tsuchiya T, Ohta H, Okawa K, Iwamatsu A, Shimada H, et al. 1999. Cloning of chlorophyllase, the key enzyme in chlorophyll degradation: finding of a lipase motif and the induction by methyl jasmonate. Proceedings of the National Academy of Sciences of the United States of America 96:15362−67

doi: 10.1073/pnas.96.26.15362
[50]

Schelbert S, Aubry S, Burla B, Agne B, Kessler F, et al. 2009. Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. The Plant Cell 21:767−85

doi: 10.1105/tpc.108.064089
[51]

Hinder B, Schellenberg M, Rodoni S, Ginsburg S, Vogt E, et al. 1996. How plants dispose of chlorophyll catabolites: directly energized uptake of tetrapyrrolic breakdown products into isolated vacuoles. Journal of Biological Chemistry 271:27233−36

doi: 10.1074/jbc.271.44.27233
[52]

Wang QL, Chen JH, He NY, Guo FQ. 2018. Metabolic reprogramming in chloroplasts under heat stress in plants. International Journal of Molecular Sciences 19:849

doi: 10.3390/ijms19030849
[53]

Gan L, Han L, Yin S, Jiang Y. 2020. Chlorophyll metabolism and gene expression in response to submergence stress and subsequent recovery in perennial ryegrass accessions differing in growth habits. Journal of Plant Physiology 251:153195

doi: 10.1016/j.jplph.2020.153195
[54]

Rossi S, Chapman C, Yuan B, Huang B. 2021. Glutamate acts as a repressor for heat-induced leaf senescence involving chlorophyll degradation and amino acid metabolism in creeping bentgrass. Grass Research 1:4

doi: 10.48130/GR-2021-0004
[55]

Rossi S, Huang B. 2023. Regulatory roles of morphactin on suppressing chlorophyll degradation under heat stress in creeping bentgrass. Grass Research 3:11

doi: 10.48130/GR-2023-0011
[56]

Sharma A, Wang J, Xu D, Tao S, Chong S, et al. 2020. Melatonin regulates the functional components of photosynthesis, antioxidant system, gene expression, and metabolic pathways to induce drought resistance in grafted Carya cathayensis plants. Science of The Total Environment 713:136675

doi: 10.1016/j.scitotenv.2020.136675
[57]

Li Z, Peng Y, Huang B. 2018. Alteration of transcripts of stress-protective genes and transcriptional factors by γ-aminobutyric acid (GABA) associated with improved heat and drought tolerance in creeping bentgrass (Agrostis stolonifera). International Journal of Molecular Sciences 19:1623

doi: 10.3390/ijms19061623
[58]

Li Z, Zhou H, Peng Y, Zhang X, Ma X, et al. 2015. Exogenously applied spermidine improves drought tolerance in creeping bentgrass associated with changes in antioxidant defense, endogenous polyamines and phytohormones. Plant Growth Regulation 76:71−82

doi: 10.1007/s10725-014-9978-9
[59]

Liu Z, Liu T, Liang L, Li Z, Hassan MJ, et al. 2020. Enhanced photosynthesis, carbohydrates, and energy metabolism associated with chitosan-induced drought tolerance in creeping bentgrass. Crop Science 60:1064−76

doi: 10.1002/csc2.20026
[60]

Ma X, Zhang J, Huang B. 2016. Cytokinin-mitigation of salt-induced leaf senescence in perennial ryegrass involving the activation of antioxidant systems and ionic balance. Environmental and Experimental Botany 125:1−11

doi: 10.1016/j.envexpbot.2016.01.002