[1] |
Barton MK. 2010. Twenty years on: the inner workings of the shoot apical meristem, a developmental dynamo. Developmental Biology 341:95−113 doi: 10.1016/j.ydbio.2009.11.029 |
[2] |
Du F, Guan C, Jiao Y. 2018. Molecular mechanisms of leaf morphogenesis. Molecular Plant 11:1117−34 doi: 10.1016/j.molp.2018.06.006 |
[3] |
Donnelly PM, Bonetta D, Tsukaya H, Dengler RE, Dengler NG. 1999. Cell cycling and cell enlargement in developing leaves of Arabidopsis. Developmental Biology 215:407−19 doi: 10.1006/dbio.1999.9443 |
[4] |
Ichihashi Y, Kawade K, Usami T, Horiguchi G, Takahashi T, et al. 2011. Key proliferative activity in the junction between the leaf blade and leaf petiole of Arabidopsis. Plant Physiology 157:1151−62 doi: 10.1104/pp.111.185066 |
[5] |
Caggiano MP, Yu X, Bhatia N, Larsson A, Ram H, et al. 2017. Cell type boundaries organize plant development. eLife 6:e27421 doi: 10.7554/eLife.27421 |
[6] |
Yu T, Guan C, Wang J, Sajjad M, Ma L, et al. 2017. Dynamic patterns of gene expression during leaf initiation. Journal of Genetics and Genomics 44:599−601 doi: 10.1016/j.jgg.2017.11.001 |
[7] |
Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, et al. 2003. Radial patterning of Arabidopsis shoots by class IIIHD-ZIP and KANADI genes. Current Biology 13:1768−74 doi: 10.1016/j.cub.2003.09.035 |
[8] |
McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, et al. 2001. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411:709−13 doi: 10.1038/35079635 |
[9] |
Shen J, Jiang Y, Pan J, Sun L, Li Q, et al. 2024. The GRAS transcription factor CsTL regulates tendril formation in cucumber. The Plant Cell 36:2818−33 doi: 10.1093/plcell/koae123 |
[10] |
Jiang Y, Zhang A, He W, Li Q, Zhao B, et al. 2023. GRAS family member LATERAL SUPPRESSOR regulates the initiation and morphogenesis of watermelon lateral organs. Plant Physiology 193:2592−604 doi: 10.1093/plphys/kiad445 |
[11] |
Iwakawa H, Ueno Y, Semiarti E, Onouchi H, Kojima S, et al. 2002. The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana, required for formation of a symmetric flat leaf lamina, encodes a member of a novel family of proteins characterized by cysteine repeats and a leucine zipper. Plant and Cell Physiology 43:467−78 doi: 10.1093/pcp/pcf077 |
[12] |
Lin WC, Shuai B, Springer PS. 2003. The Arabidopsis LATERAL ORGAN BOUNDARIES-domain gene ASYMMETRIC LEAVES2 functions in the repression of KNOX gene expression and in adaxial-abaxial patterning. The Plant Cell 15:2241−52 doi: 10.1105/tpc.014969 |
[13] |
Xu Y, Sun Y, Liang W, Huang H. 2002. The Arabidopsis AS2 gene encoding a predicted leucine-zipper protein is required for the leaf polarity formation. Acta Botanica Sinica 44:1194−202 doi: 10.3321/j.issn:1672-9072.2002.10.011 |
[14] |
Kerstetter RA, Bollman K, Taylor RA, Bomblies K, Poethig RS. 2001. KANADI regulates organ polarity in Arabidopsis. Nature 411:706−09 doi: 10.1038/35079629 |
[15] |
Gray JA, Shalit-Kaneh A, Chu DN, Hsu PY, Harmer SL. 2017. The REVEILLE clock genes inhibit growth of juvenile and adult plants by control of cell size. Plant Physiology 173:2308−22 doi: 10.1104/pp.17.00109 |
[16] |
Hsu PY, Devisetty UK, Harmer SL. 2013. Accurate timekeeping is controlled by a cycling activator in Arabidopsis. eLife 2:e00473 doi: 10.7554/eLife.00473 |
[17] |
Xi W, Gong X, Yang Q, Yu H, Liou YC. 2016. Pin1At regulates PIN1 polar localization and root gravitropism. Nature Communications 7:10430 doi: 10.1038/ncomms10430 |
[18] |
Lee H, Suh SS, Park E, Cho E, Ahn JH, et al. 2000. The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes & Development 14:2366−76 doi: 10.1101/gad.813600 |
[19] |
Liu C, Chen H, Er HL, Soo HM, Kumar PP, et al. 2008. Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis. Development 135:1481−91 doi: 10.1242/dev.020255 |
[20] |
Wang Y, Liu C, Yang D, Yu H, Liou YC. 2010. Pin1At Encoding a peptidyl-prolyl cis/trans isomerase regulates flowering time in Arabidopsis. Molecular Cell 37:112−22 doi: 10.1016/j.molcel.2009.12.020 |
[21] |
Haecker A, Groß-Hardt R, Geiges B, Sarkar A, Breuninger H, et al. 2004. Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131:657−68 doi: 10.1242/dev.00963 |
[22] |
Laux T, Mayer KFX, Berger J, Jürgens G. 1996. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122:87−96 doi: 10.1242/dev.122.1.87 |
[23] |
Nakata M, Matsumoto N, Tsugeki R, Rikirsch E, Laux T, et al. 2012. Roles of the middle domain-specific WUSCHEL-RELATED HOMEOBOX genes in early development of leaves in Arabidopsis. The Plant Cell 24:519−35 doi: 10.1105/tpc.111.092858 |
[24] |
Zhang Z, Runions A, Mentink RA, Kierzkowski D, Karady M, et al. 2020. A WOX/auxin biosynthesis module controls growth to shape leaf form. Current Biology 30:4857−4868.E6 doi: 10.1016/j.cub.2020.09.037 |
[25] |
Vandenbussche M, Horstman A, Zethof J, Koes R, Rijpkema AS, et al. 2009. Differential recruitment of WOX transcription factors for lateral development and organ fusion in Petunia and Arabidopsis. The Plant Cell 21:2269−83 doi: 10.1105/tpc.109.065862 |
[26] |
Lin H, Niu L, McHale NA, Ohme-Takagi M, Mysore KS, et al. 2013. Evolutionarily conserved repressive activity of WOX proteins mediates leaf blade outgrowth and floral organ development in plants. Proceedings of the National Academy of Sciences of the United States of America 110:366−71 doi: 10.1073/pnas.1215376110 |
[27] |
McHale NA, Marcotrigiano M. 1998. LAM1 is required for dorsoventrality and lateral growth of the leaf blade in Nicotiana. Development 125:4235−43 doi: 10.1242/dev.125.21.4235 |
[28] |
Tadege M, Lin H, Bedair M, Berbel A, Wen J, et al. 2011. STENOFOLIA regulates blade outgrowth and leaf vascular patterning in Medicago truncatula and Nicotiana sylvestris. The Plant Cell 23:2125−42 doi: 10.1105/tpc.111.085340 |
[29] |
Zhuang LL, Ambrose M, Rameau C, Weng L, Yang J, et al. 2012. LATHYROIDES, encoding a WUSCHEL-related homeobox1 transcription factor, controls organ lateral growth, and regulates tendril and dorsal petal identities in garden pea (Pisum sativum L.). Molecular Plant 5:1333−45 doi: 10.1093/mp/sss067 |
[30] |
Wang C, Zhao B, He L, Zhou S, Liu Y, et al. 2021. The WOX family transcriptional regulator SlLAM1 controls compound leaf and floral organ development in Solanum lycopersicum. Journal of Experimental Botany 72:1822−35 doi: 10.1093/jxb/eraa574 |
[31] |
Niu L, Lin H, Zhang F, Watira TW, Li G, et al. 2015. LOOSE FLOWER, a WUSCHEL-like Homeobox gene, is required for lateral fusion of floral organs in Medicago truncatula. The Plant Journal 81:480−92 doi: 10.1111/tpj.12743 |
[32] |
Vandenbussche M. 2021. The role of WOX1 genes in blade development and beyond. Journal of Experimental Botany 72:1514−16 doi: 10.1093/jxb/eraa599 |
[33] |
Ishiwata A, Ozawa M, Nagasaki H, Kato M, Noda Y, et al. 2013. Two WUSCHEL-related homeobox genes, narrow leaf2 and narrow leaf3, control leaf width in rice. Plant and Cell Physiology 54:779−92 doi: 10.1093/pcp/pct032 |
[34] |
Nardmann J, Ji J, Werr W, Scanlon MJ. 2004. The maize duplicate genes narrow sheath1 and narrow sheath2 encode a conserved homeobox gene function in a lateral domain of shoot apical meristems. Development 131:2827−39 doi: 10.1242/dev.01164 |
[35] |
Scanlon MJ, Schneeberger RG, Freeling M. 1996. The maize mutant narrow sheath fails to establish leaf margin identity in a merostematic domain. Development 122:1683−91 doi: 10.1242/dev.122.6.1683 |
[36] |
Niu H, Liu X, Tong C, Wang H, Li S, et al. 2018. The WUSCHEL-related homeobox1 gene of cucumber regulates reproductive organ development. Journal of Experimental Botany 69:5373−87 doi: 10.1093/jxb/ery329 |
[37] |
Wang H, Niu H, Li C, Shen G, Liu X, et al. 2020. WUSCHEL-related homeobox1 (WOX1) regulates vein patterning and leaf size in Cucumis sativus. Horticulture Research 7:182 doi: 10.1038/s41438-020-00404-y |
[38] |
Wang HS, Yu C, Fan PP, Bao BF, Li T, et al. 2015. Identification of two cucumber putative silicon transporter genes in Cucumis sativus. Journal of Plant Growth Regulation 34:332−38 doi: 10.1007/s00344-014-9466-5 |
[39] |
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−08 doi: 10.1006/meth.2001.1262 |
[40] |
Hellens RP, Allan AC, Friel EN, Bolitho K, Grafton K, et al. 2005. Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1:13 doi: 10.1186/1746-4811-1-13 |
[41] |
Zhang Y, Wu R, Qin G, Chen Z, Gu H, et al. 2011. Over-expression of WOX1 leads to defects in meristem development and polyamine homeostasis in Arabidopsis. Journal of Integrative Plant Biology 53:493−506 doi: 10.1111/j.1744-7909.2011.01054.x |
[42] |
Titapiwatanakun B, Blakeslee JJ, Bandyopadhyay A, Yang H, Mravec J, et al. 2009. ABCB19/PGP19 stabilises PIN1 in membrane microdomains in Arabidopsis. The Plant Journal 57:27−44 doi: 10.1111/j.1365-313X.2008.03668.x |
[43] |
Verrier PJ, Bird D, Buria B, Dassa E, Forestier C, et al. 2008. Plant ABC proteins – a unified nomenclature and updated inventory. Trends in Plant Science 13:151−59 doi: 10.1016/j.tplants.2008.02.001 |
[44] |
Mishra P, Panigrahi KC. 2015. GIGANTEA – an emerging story. Frontiers in Plant Science 6:8 doi: 10.3389/fpls.2015.00008 |
[45] |
Yan J, Li X, Zeng B, Zhong M, Yang J, et al. 2020. FKF1 F-box protein promotes flowering in part by negatively regulating DELLA protein stability under long-day photoperiod in Arabidopsis. Journal of Integrative Plant Biology 62:1717−40 doi: 10.1111/jipb.12971 |
[46] |
Kamimoto Y, Terasaka K, Hamamoto M, Takanashi K, Fukuda S, et al. 2012. Arabidopsis ABCB21 is a facultative auxin importer/exporter regulated by cytoplasmic auxin concentration. Plant and Cell Physiology 53:2090−100 doi: 10.1093/pcp/pcs149 |
[47] |
Jenness MK, Carraro N, Pritchard CA, Murphy AS. 2019. The Arabidopsis ATP-BINDING CASSETTE transporter ABCB21 regulates auxin levels in cotyledons, the root pericycle, and leaves. Frontiers in Plant Science 10:806 doi: 10.3389/fpls.2019.00806 |
[48] |
Noh B, Murphy AS, Spalding EP. 2001. Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development. The Plant Cell 13:2441−54 doi: 10.1105/tpc.010350 |
[49] |
Geisler M, Kolukisaoglu HÜ, Bouchard R, Billion K, Berger J, et al. 2003. TWISTED DWARF1, a unique plasma membrane-anchored immunophilin-like protein, interacts with Arabidopsis multidrug resistance-like transporters AtPGP1 and AtPGP19. Molecular Biology of the Cell 14:4238−49 doi: 10.1091/mbc.e02-10-0698 |
[50] |
Farinas B, Mas P. 2011. Functional implication of the MYB transcription factor RVE8/LCL5 in the circadian control of histone acetylation. The Plant Journal 66:318−29 doi: 10.1111/j.1365-313X.2011.04484.x |
[51] |
Rawat R, Takahashi N, Hsu PY, Jones MA, Schwartz J, et al. 2011. REVEILLE8 and PSEUDO-REPONSE REGULATOR5 form a negative feedback loop within the Arabidopsis circadian clock. PLoS Genetics 7:e1001350 doi: 10.1371/journal.pgen.1001350 |
[52] |
Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, et al. 1998. The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 93:1219−29 doi: 10.1016/S0092-8674(00)81465-8 |
[53] |
Wang ZY, Tobin EM. 1998. Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93:1207−17 doi: 10.1016/S0092-8674(00)81464-6 |
[54] |
Alabadí D, Yanovsky MJ, Más P, Harmer SL, Kay SA. 2002. Critical role for CCA1 and LHY in maintaining circadian rhythmicity in Arabidopsis. Current Biology 12:757−61 doi: 10.1016/S0960-9822(02)00815-1 |
[55] |
Nagel DH, Doherty CJ, Pruneda-Paz JL, Schmitz RJ, Ecker JR, et al. 2015. Genome-wide identification of CCA1 targets uncovers an expanded clock network in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 112:E4802−E4810 doi: 10.1073/pnas.1513609112 |
[56] |
Gendron JM, Pruneda-Paz JL, Doherty CJ, Gross AM, Kang SE, et al. 2012. Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor. Proceedings of the National Academy of Sciences of the United States of America 109:3167−72 doi: 10.1073/pnas.1200355109 |
[57] |
Kamioka M, Takao S, Suzuki T, Taki K, Higashiyama T, et al. 2016. Direct repression of evening genes by CIRCADIAN CLOCK-ASSOCIATED1 in the Arabidopsis circadian clock. The Plant Cell 28:696−711 doi: 10.1105/tpc.15.00737 |
[58] |
Pokhilko A, Fernández AP, Edwards KD, Southern MM, Halliday KJ, et al. 2012. The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops. Molecular Systems Biology 8:574 doi: 10.1038/msb.2012.6 |
[59] |
Scandola S, Mehta D, Li Q, Gallo MCR, Castillo B, et al. 2022. Multi-omic analysis shows REVEILLE clock genes are involved in carbohydrate metabolism and proteasome function. Plant Physiology 190:1005−23 doi: 10.1093/plphys/kiac269 |
[60] |
Song YH, Ito S, Imaizumi T. 2013. Flowering time regulation: photoperiod- and temperature-sensing in leaves. Trends in Plant Science 18:575−83 doi: 10.1016/j.tplants.2013.05.003 |
[61] |
Amasino R. 2010. Seasonal and developmental timing of flowering. The Plant Journal 61:1001−13 doi: 10.1111/j.1365-313X.2010.04148.x |
[62] |
Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, et al. 2000. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613−16 doi: 10.1126/science.288.5471.1613 |
[63] |
Imaizumi T, Schultz TF, Harmon FG, Ho LA, Kay SA. 2005. FKF1 F-BOX protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 309:293−97 doi: 10.1126/science.1110586 |
[64] |
Sawa M, Nusinow DA, Kay SA, Imaizumi T. 2007. FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318:261−65 doi: 10.1126/science.1146994 |
[65] |
Yu Y, Yang M, Liu X, Xia Y, Hu R, et al. 2022. Genome-wide analysis of the WOX gene family and the role of EjWUSa in regulating flowering in loquat (Eriobotrya japonica). Frontiers in Plant Science 13:1024515 doi: 10.3389/fpls.2022.1024515 |