[1]

Eremina M, Rozhon W, Poppenberger B. 2016. Hormonal control of cold stress responses in plants. Cellular and Molecular Life Sciences 73:797−810

doi: 10.1007/s00018-015-2089-6
[2]

Chen L, Hu W, Mishra N, Wei J, Lu H, et al. 2020. AKR2A interacts with KCS1 to improve VLCFAs contents and chilling tolerance of Arabidopsis thaliana. The Plant Journal 103:1575−89

doi: 10.1111/tpj.14848
[3]

Guan Y, Li Z, He F, Huang Y, Song W, et al. 2015. "On-off" thermoresponsive coating agent containing salicylic acid applied to maize seeds for chilling tolerance. PLoS ONE 10:e0120695

doi: 10.1371/journal.pone.0120695
[4]

Sharma A, Kumar V, Shahzad B, Ramakrishnan M, Sidhu GPS, et al. 2020. Photosynthetic response of plants under different abiotic stresses: a review. Journal of Plant Growth Regulation 39:509−31

doi: 10.1007/s00344-019-10018-x
[5]

Sinha S, Kukreja B, Arora P, Sharma M, Pandey GK, et al. 2015. The omics of cold stress responses in plants. In Elucidation of Abiotic Stress Signaling in Plants, ed. Pandey GK, New York: Springer. pp. 143−94. doi: 10.1007/978-1-4939-2540-7_6

[6]

Zhu JK. 2016. Abiotic stress signaling and responses in plants. Cell 167:313−324

doi: 10.1016/j.cell.2016.08.029
[7]

Beney L, Gervais P. 2001. Influence of the fluidity of the membrane on the response of microorganisms to environmental stresses. Applied Microbiology and Biotechnology 57:34−42

doi: 10.1007/s002530100754
[8]

Hara M, Terashima S, Fukaya T, Kuboi T. 2003. Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217:290−98

doi: 10.1007/s00425-003-0986-7
[9]

Kim SI, Tai TH. 2011. Evaluation of seedling cold tolerance in rice cultivars: a comparison of visual ratings and quantitative indicators of physiological changes. Euphytica 178:437−47

doi: 10.1007/s10681-010-0343-4
[10]

Kaplan F, Kopka J, Sung DY, Zhao W, Popp M, et al. 2007. Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. The Plant Journal 50:967−81

doi: 10.1111/j.1365-313X.2007.03100.x
[11]

Theocharis A, Clément C, Barka EA. 2012. Physiological and molecular changes in plants grown at low temperatures. Planta 235:1091−1105

doi: 10.1007/s00425-012-1641-y
[12]

Hu Z, Yan W, Yang C, Huang X, Hu X, et al. 2022. Integrative analysis of transcriptome and metabolome provides insights into the underlying mechanism of cold stress response and recovery in two tobacco cultivars. Environmental and Experimental Botany 200:104920

doi: 10.1016/j.envexpbot.2022.104920
[13]

Szabados L, Savouré A. 2010. Proline: a multifunctional amino acid. Trends in Plant Science 15:89−97

doi: 10.1016/j.tplants.2009.11.009
[14]

Keunen ELS, Peshev D, Vangronsveld J, Van Den Ende W, Cuypers A. 2013. Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant, Cell & Environment 36:1242−1255

doi: 10.1111/pce.12061
[15]

Ahire ML, Mundada PS, Nikam TD, Bapat VA, Penna S. 2022. Multifaceted roles of silicon in mitigating environmental stresses in plants. Plant Physiology and Biochemistry 169:291−310

doi: 10.1016/j.plaphy.2021.11.010
[16]

Fürtauer L, Weiszmann J, Weckwerth W, Nägele T. 2019. Dynamics of plant metabolism during cold acclimation. International Journal of Molecular Sciences 20:5411

doi: 10.3390/ijms20215411
[17]

Shi Y, Ding Y, Yang S. 2015. Cold signal transduction and its interplay with phytohormones during cold acclimation. Plant and Cell Physiology 56:7−15

doi: 10.1093/pcp/pcu115
[18]

Wang Y, Xin H, Fan P, Zhang J, Liu Y, et al. 2021. The genome of Shanputao (Vitis amurensis) provides a new insight into cold tolerance of grapevine. The Plant Journal 105:1495−506

doi: 10.1111/tpj.15127
[19]

Bhat KA, Mahajan R, Pakhtoon MM, Urwat U, Bashir Z, et al. 2022. Low temperature stress tolerance: an insight into the omics approaches for legume crops. Frontiers in Plant Science 13:888710

doi: 10.3389/fpls.2022.888710
[20]

Clemente-Moreno MJ, Omranian N, Sáez PL, Figueroa CM, Del-Saz N, et al. 2020. Low-temperature tolerance of the Antarctic species Deschampsia antarctica: a complex metabolic response associated with nutrient remobilization. Plant, Cell & Environment 43:1376−93

doi: 10.1111/pce.13737
[21]

Li M, Sui N, Lin L, Yang Z, Zhang Y. 2019. Transcriptomic profiling revealed genes involved in response to cold stress in maize. Functional Plant Biology 46:830−44

doi: 10.1071/fp19065
[22]

Klepikova AV, Kulakovskiy IV, Kasianov, AS, Logacheva MD, Penin AA. 2019. An update to database TraVA: organ-specific cold stress response in Arabidopsis thaliana. BMC Plant Biology 19:49

doi: 10.1186/s12870-019-1636-y
[23]

Tweneboah S, Oh SK. 2017. Biological roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in solanaceous crops. Journal of Plant Biotechnology 44:1−11

doi: 10.5010/JPB.2017.44.1.001
[24]

Zhou H, He Y, Zhu Y, Li M, Song S, et al. 2020. Comparative transcriptome profiling reveals cold stress responsiveness in two contrasting Chinese jujube cultivars. BMC Plant Biology 20:240

doi: 10.1186/s12870-020-02450-z
[25]

Peng M, Chang Y, Chu G, Wang M. 2019. Low-temperature tolerance and transcriptome analyses during seed germination of Anabasis aphylla. Journal of Plant Interactions 14:254−64

doi: 10.1080/17429145.2019.1616840
[26]

Yazdanpanah P, Jonoubi P, Zeinalabedini M, Rajaei H, Ghaffari MR, et al. 2021. Seasonal metabolic investigation in pomegranate (Punica granatum L.) highlights the role of amino acids in genotype- and organ-specific adaptive responses to freezing stress. Frontiers in Plant Science 12:699139

doi: 10.3389/fpls.2021.699139
[27]

Ye N, Jia L, Zhang J. 2012. ABA signal in rice under stress conditions. Rice 5:1

doi: 10.1186/1939-8433-5-1
[28]

Zhao Y, Zhou M, Xu K, Li J, Li S, et al. 2019. Integrated transcriptomics and metabolomics analyses provide insights into cold stress response in wheat. The Crop Journal 7:857−66

doi: 10.1016/j.cj.2019.09.002
[29]

Xu G, Li L, Zhou J, He M, Lyu D, et al. 2023. Integrated transcriptomics and metabolomics analyses reveal key genes and essential metabolic pathways for the acquisition of cold tolerance during dormancy in apple. Environmental and Experimental Botany 213:105413

doi: 10.1016/j.envexpbot.2023.105413
[30]

Epstein E. 2009. Silicon: its manifold roles in plants. Annals of Applied Biology 155:155−60

doi: 10.1111/j.1744-7348.2009.00343.x
[31]

Zhu YX, Gong HJ, Yin JL. 2019. Role of silicon in mediating salt tolerance in plants: a review. Plants 8:147

doi: 10.3390/plants8060147
[32]

Ma JF, Miyake Y, Takahashi E. 2001. Silicon as a beneficial element for crop plants. Studies in Plant Science, eds. Datnoff LE, Datnoff GH, Korndörfer GH. Amsterdam: Elsevier. pp. 17−39. doi: 10.1016/S0928-3420(01)80006-9

[33]

Magno Queiroz Luz J, Abreu Asmar S, Pasqual M, Gomes de Araujo A, Pio LAS, et al. 2012. Modifications in leaf anatomy of banana plants cultivar 'Maçã' subjected to different silicon sources in vitro. Acta Horticulturae 961:239−44

doi: 10.17660/ACTAHORTIC.2012.961.30
[34]

Moradtalab N, Weinmann M, Walker F, Höglinger B, Ludewig U, et al. 2018. Silicon improves chilling tolerance during early growth of maize by effects on micronutrient homeostasis and hormonal balances. Frontiers in Plant Science 9:420

doi: 10.3389/fpls.2018.00420
[35]

Habibi G. 2016. Effect of foliar-applied silicon on photochemistry, antioxidant capacity and growth in maize plants subjected to chilling stress. Acta Agriculturae Slovenica 107:33−43

doi: 10.14720/aas.2016.107.1.04
[36]

Joudmand A, Hajiboland R. 2019. Silicon mitigates cold stress in barley plants via modifying the activity of apoplasmic enzymes and concentration of metabolites. Acta Physiologiae Plantarum 41:29

doi: 10.1007/s11738-019-2817-x
[37]

Azeem S, Li Z, Zheng H, Lin W, Arafat Y, et al. 2016. Quantitative proteomics study on Lsi1 in regulation of rice (Oryza sativa L.) cold resistance. Plant Growth Regulation 78:307−23

doi: 10.1007/s10725-015-0094-2
[38]

Liang Y, Zhu J, Li Z, Chu G, Ding Y, et al. 2008. Role of silicon in enhancing resistance to freezing stress in two contrasting winter wheat cultivars. Environmental and Experimental Botany 64:286−94

doi: 10.1016/j.envexpbot.2008.06.005
[39]

Qian ZZ, Zhuang SY, Li Q, Gui RY. 2019. Soil silicon amendment increases Phyllostachys praecox cold tolerance in a pot experiment. Forests 10:405

doi: 10.3390/f10050405
[40]

Azarfam SP, Nadian H, Moezzi A, Gholami A. 2020. Effect of silicon on phytochemical and medicinal properties of aloe vera under cold stress. Applied Ecology and Environmental Research 18:561−75

doi: 10.15666/aeer/1801_561575
[41]

Yang YZ, Li T, Teng RM, Han MH, Zhuang J. 2021. Low temperature effects on carotenoids biosynthesis in the leaves of green and albino tea plant (Camellia sinensis (L.) O. Kuntze). Scientia Horticulturae 285:110164

doi: 10.1016/j.scienta.2021.110164
[42]

Lu Y, Hu Y, Li P. 2017. Consistency of electrical and physiological properties of tea leaves on indicating critical cold temperature. Biosystems Engineering 159:89−96

doi: 10.1016/j.biosystemseng.2017.04.012
[43]

Lu Y, Hu Y, Snyder RL, Kent ER. 2019. Tea leaf's microstructure and ultrastructure response to low temperature in indicating critical damage temperature. Information Processing in Agriculture 6:247−54

doi: 10.1016/j.inpa.2018.09.004
[44]

Ma L, Wang Y, Liu W, Liu Z. 2014. Overexpression of an alfalfa GDP-mannose 3,5-epimerase gene enhances acid, drought and salt tolerance in transgenic Arabidopsis by increasing ascorbate accumulation. Biotechnology Letters 36:2331−41

doi: 10.1007/s10529-014-1598-y
[45]

Huang T, Jander G. 2017. Abscisic acid-regulated protein degradation causes osmotic stress-induced accumulation of branchedchain amino acids in Arabidopsis thaliana. Planta 246:737−47

doi: 10.1007/s00425-017-2727-3
[46]

He J, Qin J, Long L, Ma Y, Li H, et al. 2011. Net cadmium flux and accumulation reveal tissue-specific oxidative stress and detoxification in Populus × canescens. Physiologia Plantarum 143:50−63

doi: 10.1111/j.1399-3054.2011.01487.x
[47]

Yemm EW, Willis AJ. 1954. The estimation of carbohydrates in plant extracts by anthrone. The Biochem Journal 57:508−14

doi: 10.1042/bj0570508
[48]

He J, Li H, Luo J, Ma C, Li S, et al. 2013. A transcriptomic network underlies microstructural and physiological responses to cadmium in Populus×canescens. Plant Physiology 162:424−39

doi: 10.1104/pp.113.215681
[49]

Zhu J, Chen H, Liu L, Xia X, Yan X, et al. 2024. JA-mediated MYC2/LOX/AOS feedback loop regulates osmotic stress response in tea plant. Horticultural Plant Journal 10:931−46

doi: 10.1016/j.hpj.2022.10.014
[50]

Lu M, Han J, Zhu B, Jia H, Yang T, et al. 2019. Significantly increased amino acid accumulation in a novel albino branch of the tea plant (Camellia sinensis). Planta 249:363−76

doi: 10.1007/s00425-018-3007-6
[51]

Li P, Fu J, Xu Y, Shen Y, Zhang Y, et al. 2022. CsMYB1 integrates the regulation of trichome development and catechins biosynthesis in tea plant domestication. New Phytologist 10:902−17

doi: 10.1111/nph.18026
[52]

Guo P, Qi YP, Yang LT, Lai NW, Ye X, et al. 2017. Root adaptive responses to aluminum-treatment revealed by RNA-Seq in two Citrus species with different aluminum-tolerance. Frontiers in Plant Science 8:330

doi: 10.3389/fpls.2017.00330
[53]

Zhou CP, Qi YP, You X, Yang LT, Guo P, et al. 2013. Leaf cDNA-AFLP analysis of two Citrus species differing in manganese tolerance in response to long-term manganese-toxicity. BMC Genomics 14:621

doi: 10.1186/1471-2164-14-621
[54]

Li H, He H, Yan M, Lin Q, Qin F, et al. 2024. CsmiR396d targeting of CsGS2 plays an important role in glutamine metabolism of tea plant (Camellia sinensis). Beverage Plant Research 4:e005

doi: 10.48130/bpr-0023-0038
[55]

Huang HY, Ren QQ, Lai YH, Peng MY, Zhang J, et al. 2021. Metabolomics combined with physiology and transcriptomics reveals how Citrus grandis leaves cope with copper-toxicity. Ecotoxicology and Environmental Safety 223:112579

doi: 10.1016/j.ecoenv.2021.112579
[56]

Kanehisa M, Furumichi M, Sato Y, Matsuura Y, Ishiguro-Watanabe M. 2025. KEGG: biological systems database as a model of the real world. Nucleic Acids Research 53:672−77

doi: 10.1093/nar/gkae909
[57]

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al. 2003. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research 13:2498−504

doi: 10.1101/gr.1239303
[58]

Tiwari S, Patel A, Singh M, Prasad SM. 2020. Regulation of temperature stress in plants. In Plant Life under Changing Environment, eds. Tripathi DK, Singh VP, Chauhan DK, Sharma S, Prasad SM, et al. Amsterdam: Elsevier. pp. 25−45. doi: 10.1016/B978-0-12-818204-8.00002-3

[59]

Ku YG, Woolley DJ, Hughes AR, Nichols MA. 2007. Temperature effects on dormancy, bud break and spear growth in asparagus (Asparagus officinalis L). The Journal of Horticultural Science and Biotechnology 82:446−50

doi: 10.1080/14620316.2007.11512257
[60]

Choudhury FK, Rivero RM, Blumwald E, Mittler R. 2017. Reactive oxygen species, abiotic stress and stress combination. The Plant Journal 90:856−67

doi: 10.1111/tpj.13299
[61]

Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. 2004. Reactive oxygen gene network of plants. Trends in Plant Science 9:490−98

doi: 10.1016/j.tplants.2004.08.009
[62]

Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell & Environment 33(4):453−67

doi: 10.1111/j.1365-3040.2009.02041.x
[63]

Ashraf M, Foolad MR. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany 59(2):206−16

doi: 10.1016/j.envexpbot.2005.12.006
[64]

Kishor PK, Sangam S, Amrutha RN, Laxmi PS, Naidu KR, et al. 2005. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Current Science 88:424−38

[65]

Yaghubi K, Ghaderi N, Vafaee Y, Javadi T. 2016. Potassium silicate alleviates deleterious effects of salinity on two strawberry cultivars grown under soilless pot culture. Scientia Horticulturae 213:87−95

doi: 10.1016/j.scienta.2016.10.012
[66]

Arikan B, Yildiztugay E, Ozfidan-Konakci C. 2023. Responses of salicylic acid encapsulation on growth, photosynthetic attributes and ROS scavenging system in Lactuca sativa exposed to polycyclic aromatic hydrocarbon pollution. Plant Physiology and Biochemistry 203:108026

doi: 10.1016/j.plaphy.2023.108026
[67]

Zhu A, Li W, Ye J, Sun X, Ding Y, et al. 2011. Microarray expression profiling of postharvest ponkan mandarin (Citrus reticulata) fruit under cold storage reveals regulatory gene candidates and implications on soluble sugars metabolism. Journal of Integrative Plant Biology 53:358−74

doi: 10.1111/j.1744-7909.2011.01035.x
[68]

Jeon J, Kim NY, Kim S, Kang NY, Novák O, et al. 2010. A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis. Journal of Biological Chemistry 285:23371−86

doi: 10.1074/jbc.M109.096644
[69]

Zhang X, Teixeira da Silva JA, Niu M, Li M, He C, et al. 2017. Physiological and transcriptomic analyses reveal a response mechanism to cold stress in Santalum album L. leaves. Scientific Reports 7:42165

doi: 10.1038/srep42165
[70]

Du H, Liu H, Xiong L. 2013. Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice. Frontiers in Plant Science 4:397

doi: 10.3389/fpls.2013.00397
[71]

Agati G, Cerovic ZG, Pinelli P, Tattini M. 2011. Light-induced accumulation of ortho-dihydroxylated flavonoids as non-destructively monitored by chlorophyll fluorescence excitation techniques. Environmental and Experimental Botany 73:3−9

doi: 10.1016/j.envexpbot.2010.10.002
[72]

Zuther E, Schulz E, Childs LH, Hincha DK. 2012. Natural variation in the non-acclimated and cold-acclimated freezing tolerance of Arabidopsis thaliana accessions. Plant, Cell & Environment 35:1860−78

doi: 10.1111/j.1365-3040.2012.02522.x
[73]

Schulz E, Tohge T, Zuther E, Fernie AR, Hincha DK. 2015. Natural variation in flavonol and anthocyanin metabolism during cold acclimation in Arabidopsis thaliana accessions. Plant, Cell & Environment 38:1658−72

doi: 10.1111/pce.12518
[74]

Obata T, Fernie AR. 2012. The use of metabolomics to dissect plant responses to abiotic stresses. Cellular and Molecular Life Sciences 69:3225−43

doi: 10.1007/s00018-012-1091-5
[75]

Krasensky J, Jonak C. 2012. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany 63:1593−608

doi: 10.1093/jxb/err460
[76]

Verslues PE, Sharma S. 2010. Proline metabolism and its implications for plant-environment interaction. Arabidopsis Book 8:e0140

doi: 10.1199/tab.0140
[77]

Lv WT, Lin B, Zhang M, Hua XJ. 2011. Proline accumulation is inhibitory to Arabidopsis seedlings during heat stress. Plant Physiology 156:1921−33

doi: 10.1104/pp.111.175810
[78]

Hildebrandt TM, Nunes Nesi A, Araújo WL, Braun HP. 2015. Amino acid catabolism in plants. Molecular Plant 8:1563−79

doi: 10.1016/j.molp.2015.09.005
[79]

Less H, Galili G. 2008. Principal transcriptional programs regulating plant amino acid metabolism in response to abiotic stresses. Plant Physiology 147:316−30

doi: 10.1104/pp.108.115733
[80]

Joshi V, Joung JG, Fei Z, Jander G. 2010. Interdependence of threonine, methionine and isoleucine metabolism in plants: accumulation and transcriptional regulation under abiotic stress. Amino Acids 39:933−947

doi: 10.1007/s00726-010-0505-7
[81]

Zandalinas SI, Mittler R. 2022. Plant responses to multifactorial stress combination. New Phytologist 234:1161−67

doi: 10.1111/nph.18087
[82]

Zandalinas SI, Balfagón D, Gómez-Cadenas A, Mittler R. 2022. Plant responses to climate change: metabolic changes under combined abiotic stresses. Journal of Experimental Botany 73:3339−54

doi: 10.1093/jxb/erac073
[83]

Araújo WL, Tohge T, Ishizaki K, Leaver CJ, Fernie AR. 2011. Protein degradation-an alternative respiratory substrate for stressed plants. Trends in Plant Science 16:489−98

doi: 10.1016/j.tplants.2011.05.008
[84]

Pires MV, Pereira Júnior AA, Medeiros DB, Daloso DM, Pham PA, et al. 2016. The influence of alternative pathways of respiration that utilize branched-chain amino acids following water shortage in Arabidopsis. Plant, Cell & Environment 39:1304−19

doi: 10.1111/pce.12682
[85]

Brito DS, Quinhones CGS, Neri-Silva R, Heinemann B, Schertl P, et al. 2022. The role of the electron-transfer flavoprotein: ubiquinone oxidoreductase following carbohydrate starvation in Arabidopsis cell cultures. Plant Cell Reports 41:431−46

doi: 10.1007/s00299-021-02822-1
[86]

Saito K, Yonekura-Sakakibara K, Nakabayashi R, Higashi Y, Yamazaki M, et al. 2013. The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity. Plant Physiology and Biochemistry 72:21−34

doi: 10.1016/j.plaphy.2013.02.001