| [1] |
Yuan B, Mao X, Wang Z, Hao R, Zhao Y. 2020. Radical-induced oxidation removal of multi-air-pollutant: A critical review. Journal of Hazardous Materials 383:121162 doi: 10.1016/j.jhazmat.2019.121162 |
| [2] |
Lin F, Wang Z, Zhang Z, He Y, Zhu Y, et al. 2020. Flue gas treatment with ozone oxidation: An overview on NOx, organic pollutants, and mercury. Chemical Engineering Journal 382:123030 doi: 10.1016/j.cej.2019.123030 |
| [3] |
Elishav O, Mosevitzky Lis B, Miller EM, Arent DJ, Valera-Medina A, et al. 2020. Progress and prospective of nitrogen-based alternative fuels. Chemical Reviews 120:5352−436 doi: 10.1021/acs.chemrev.9b00538 |
| [4] |
Shan W, Yu Y, Zhang Y, He G, Peng Y, et al. 2021. Theory and practice of metal oxide catalyst design for the selective catalytic reduction of NOx with NH3. Catalysis Today 376:292−301 doi: 10.1016/j.cattod.2020.05.015 |
| [5] |
Sun Y, Zwolińska E, Chmielewski AG. 2016. Abatement technologies for high concentrations of NOx and SO2 removal from exhaust gases: A review. Critical Reviews in Environmental Science and Technology 46:119−42 doi: 10.1080/10643389.2015.1063334 |
| [6] |
Tayyeb Javed M, Irfan N, Gibbs BM. 2007. Control of combustion-generated nitrogen oxides by selective non-catalytic reduction. Journal of Environmental Management 83:251−89 doi: 10.1016/j.jenvman.2006.03.006 |
| [7] |
Lyon RK. 1976. The NH3-NO-O2 reaction. International Journal of Chemical Kinetics 8:315−18 doi: 10.1002/kin.550080213 |
| [8] |
Mahmoudi S, Baeyens J, Seville JPK. 2010. NOx formation and selective non-catalytic reduction (SNCR) in a fluidized bed combustor of biomass. Biomass and Bioenergy 34:1393−409 doi: 10.1016/j.biombioe.2010.04.013 |
| [9] |
Rahman ZU, Wang X, Zhang J, Baleta J, Vujanović M, et al. 2021. Kinetic study and optimization on SNCR process in pressurized oxy-combustion. Journal of the Energy Institute 94:263−71 doi: 10.1016/j.joei.2020.09.010 |
| [10] |
Miller JA, Bowman CT. 1989. Mechanism and modeling of nitrogen chemistry in combustion. Progress in Energy and Combustion Science 15:287−338 doi: 10.1016/0360-1285(89)90017-8 |
| [11] |
Cobos CJ, Glarborg P, Marshall P, Troe J. 2023. Re-evaluation of rate constants for the reaction N2H4 (+ M) $\rightleftarrows $ NH2 + NH2 (+ M). Combustion and Flame 257:112374 doi: 10.1016/j.combustflame.2022.112374 |
| [12] |
Wu J, Bruce FNO, Bai X, Ren X, Li Y. 2023. Insights into the reaction kinetics of hydrazine-based fuels: a comprehensive review of theoretical and experimental methods. Energies 16:6006 doi: 10.3390/en16166006 |
| [13] |
Mchale ET, Knox BE, Palmer HB. 1965. Determination of the decomposition kinetics of hydrazine using a single-pulse shock tube. Symposium (International) on Combustion 10:341−51 doi: 10.1016/S0082-0784(65)80181-3 |
| [14] |
Diesen RW. 1963. Mass spectral studies of kinetics behind shock waves. II. Thermal decomposition of hydrazine. Journal of Chemical Physics 39:2121−28 doi: 10.1063/1.1701411 |
| [15] |
Moberly WH. 1962. Shock tube study of hydrazine decomposition. The Journal of Physical ChemistryProgress in Energy and Combustion Science 66:366−68 |
| [16] |
Szwarc M. 1949. The dissociation energy of the N-N bond in hydrazine. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 198:267−84 doi: 10.1098/rspa.1949.0100 |
| [17] |
Michel KW. 1965. Thermal decomposition of hydrazine. Angewandte Chemie 4(4):369−69 doi: 10.1002/anie.196503691 |
| [18] |
Sawyer RF, Glassman I. 1967. Gas-phase reactions of hydrazine with nitrogen dioxide, nitric oxide, and oxygen. Symposium (International) on Combustion 11:861−69 doi: 10.1016/S0082-0784(67)80212-1 |
| [19] |
Azuhata S, Akimoto H, Hishinuma Y. 1985. The behavior of nitrogen-oxides in the N2H4-NO-O2 reaction. AIChE Journal 31:1223−25 doi: 10.1002/aic.690310722 |
| [20] |
Lee JB, Kim SD. 1998. NOx reduction by hydrazine in a pilot-scale reactor. Chemical Engineering Journal 69:99−104 doi: 10.1016/S1385-8947(98)00068-0 |
| [21] |
Konnov AA, De Ruyck J. 2001. Kinetic modeling of the decomposition and flames of hydrazine. Combustion and Flame 124:106−26 doi: 10.1016/S0010-2180(00)00187-5 |
| [22] |
Hong L, Chen D, Wang D, Huang S. 2012. Kinetic mechanism and characteristics researches for hydrazine-based NOx removal at moderate to high temperatures. Environmental Science 33:2901−8 |
| [23] |
Guan Z, Hong L, Guo R, Pan W, Li F, et al. 2019. Improved NO removal from flue gas by hydrazine and its mechanism analysis. Journal of Chemical Technology & Biotechnology 94:3263−68 doi: 10.1002/jctb.6136 |
| [24] |
Zhu Y, Curran HJ, Girhe S, Murakami Y, Pitsch H, et al. 2024. The combustion chemistry of ammonia and ammonia/hydrogen mixtures: A comprehensive chemical kinetic modeling study. Combustion and Flame 260:113239 doi: 10.1016/j.combustflame.2023.113239 |
| [25] |
Panigrahy S, Mohamed AAE, Wang P, Bourque G, Curran HJ. 2023. When hydrogen is slower than methane to ignite. Proceedings of the Combustion Institute 39:253−63 doi: 10.1016/j.proci.2022.08.025 |
| [26] |
Stagni A, Cavallotti C, Arunthanayothin S, Song Y, Herbinet O, et al. 2020. An experimental, theoretical and kinetic-modeling study of the gas-phase oxidation of ammonia. Reaction Chemistry & Engineering 5:696−711 doi: 10.1039/C9RE00429G |
| [27] |
Xu S, Lin MC. 2009. Ab initio chemical kinetics for the NH2+HNOx reactions, part III: Kinetics and mechanism for NH2+HONO2. International Journal of Chemical Kinetics 42:69−78 doi: 10.1002/kin.20463 |
| [28] |
Klippenstein SJ, Glarborg P. 2022. Theoretical kinetics predictions for NH2+HO2. Combustion and Flame 236:111787 doi: 10.1016/j.combustflame.2021.111787 |
| [29] |
Glarborg P, Hashemi H, Cheskis S, Jasper AW. 2021. On the rate constant for NH2+HO2 and third-body collision efficiencies for NH2+H(+M) and NH2+NH2(+M). The Journal of Physical Chemistry A 125:1505−16 doi: 10.1021/acs.jpca.0c11011 |
| [30] |
Sahu AB, Mohamed AAE, Panigrahy S, Saggese C, Patel V, et al. 2022. An experimental and kinetic modeling study of NOx sensitization on methane autoignition and oxidation. Combustion and Flame 238:111746 doi: 10.1016/j.combustflame.2021.111746 |
| [31] |
Glarborg P, Miller JA, Ruscic B, Klippenstein SJ. 2018. Modeling nitrogen chemistry in combustion. Progress in Energy and Combustion Science 67:31−68 doi: 10.1016/j.pecs.2018.01.002 |
| [32] |
Glarborg P. 2023. The NH3/NO2/O2 system: constraining key steps in ammonia ignition and N2O formation. Combustion and Flame 257:112311 doi: 10.1016/j.combustflame.2022.112311 |
| [33] |
Klippenstein SJ, Harding LB, Glarborg P, Gao Y, Hu H, et al. 2013. Rate constant and branching fraction for the NH2 + NO2 reaction. The Journal of Physical Chemistry A 117:9011−22 doi: 10.1021/jp4068069 |
| [34] |
Hwang DY, Mebel AM. 2003. Reaction mechanism of N2/H2 conversion to NH3: a theoretical study. The Journal of Physical Chemistry A 107:2865−74 doi: 10.1021/jp0270349 |
| [35] |
Chen H, Chen D, Fan S, Hong L, Wang D. 2016. SNCR De-NOx within a moderate temperature range using urea-spiked hydrazine hydrate as reductant. Chemosphere 161:208−18 doi: 10.1016/j.chemosphere.2016.07.010 |
| [36] |
Bahng MK, Macdonald RG. 2009. Determination of the rate constants for the radical-radical reactions NH2(X˜2B1) + NH(X3Σ-) and NH2(X˜2B1) + H(2S) at 293 K. The Journal of Physical Chemistry A 113:2415−23 doi: 10.1021/jp809643u |
| [37] |
Patrick R, Golden DM. 1984. Kinetics of the reactions of amidogen radicals with ozone and molecular oxygen. The Journal of Physical Chemistry 88:491−95 doi: 10.1021/j150647a034 |
| [38] |
Altinay G, Macdonald RG. 2015. Determination of the rate constants for the NH2(X2B1) + NH2(X2B1) and NH2(X2B1) + H recombination reactions in N2 as a function of temperature and pressure. The Journal of Physical Chemistry A 119:7593−610 doi: 10.1021/acs.jpca.5b00917 |
| [39] |
Gordon S, Mulac W, Nangia P. 1971. Pulse radiolysis of ammonia gas. II. rate of disappearance of the NH2(X2B1) radical. The Journal of Physical Chemistry 75:2087−93 doi: 10.1021/j100683a004 |
| [40] |
Gao Y, Alecu IM, Hashemi H, Glarborg P, Marshall P. 2023. Reactions of hydrazine with the amidogen radical and atomic hydrogen. Proceedings of the Combustion Institute 39:571−79 doi: 10.1016/j.proci.2022.07.045 |
| [41] |
Dean AM, Bozzelli JW. 2000. Combustion chemistry of nitrogen. In Gas-phase combustion chemistry, ed. Gardiner WC. New York, USA: Springer. pp. 125−341. doi: 10.1007/978-1-4612-1310-9_2 |
| [42] |
Diévart P, Catoire L. 2020. Contributions of experimental data obtained in concentrated mixtures to kinetic studies: application to monomethylhydrazine pyrolysis. The Journal of Physical Chemistry A 124:6214−36 doi: 10.1021/acs.jpca.0c03144 |
| [43] |
Song S, Hanson RK, Bowman CT, Golden DM. 2001. Shock tube determination of the overall rate of NH2 + NO → products in the thermal De-NOx temperature window. International Journal of Chemical Kinetics 33:715−21 doi: 10.1002/kin.1068 |
| [44] |
Klippenstein SJ, Harding LB, Glarborg P, Miller JA. 2011. The role of NNH in NO formation and control. Combustion and Flame 158:774−89 doi: 10.1016/j.combustflame.2010.12.013 |
| [45] |
Marshall P, Ko T, Fontijn A. 1989. High-temperature photochemistry kinetics studies of the reactions of hydrogen atom(12S) and deuterium atom(12S) with nitrous oxide. The Journal of Physical Chemistry 93:1922−27 doi: 10.1021/j100342a045 |
| [46] |
Stagni A, Cavallotti C. 2023. H-abstractions by O2, NO2, NH2, and HO2 from H2NO: theoretical study and implications for ammonia low-temperature kinetics. Proceedings of the Combustion Institute 39:633−41 doi: 10.1016/j.proci.2022.08.024 |
| [47] |
Klippenstein SJ, Harding LB, Ruscic B, Sivaramakrishnan R, Srinivasan NK, et al. 2009. Thermal decomposition of NH2OH and subsequent reactions: Ab initio transition state theory and reflected shock tube experiments. The Journal of Physical Chemistry A 113:10241−59 doi: 10.1021/jp905454k |
| [48] |
Römming HJ, Wagner HG. 1996. A kinetic study of the reactions of NH(X3Σ−) with O2 and NO in the temperature range from 1200 to 2200 K. Symposium (International) on Combustion 26:559−66 doi: 10.1016/S0082-0784(96)80260-8 |
| [49] |
Mousavipour SH, Pirhadi F, HabibAgahi A. 2009. A theoretical investigation on the kinetics and mechanism of the reaction of amidogen with hydroxyl radical. The Journal of Physical Chemistry A 113:12961−71 doi: 10.1021/jp905197h |
| [50] |
ANSYS. 2023. ANSYS Chemkin-Pro: a chemical kinetics package for analysis of gas-phase chemical kinetics. www.ansys.com/zh-cn/products/fluids/ansys-chemkin-pro |
| [51] |
Chen J, Lubrano Lavadera M, Konnov AA. 2023. An experimental and modeling study on the laminar burning velocities of ammonia + oxygen + argon mixtures. Combustion and Flame 255:112930 doi: 10.1016/j.combustflame.2023.112930 |
| [52] |
Thomas DE, Shrestha KP, Mauss F, Northrop WF. 2023. Extinction and NO formation of ammonia-hydrogen and air non-premixed counterflow flames. Proceedings of the Combustion Institute 39:1803−12 doi: 10.1016/j.proci.2022.08.067 |
| [53] |
Zhang X, Moosakutty SP, Rajan RP, Younes M, Sarathy SM. 2021. Combustion chemistry of ammonia/hydrogen mixtures: Jet-stirred reactor measurements and comprehensive kinetic modeling. Combustion and Flame 234:111653 doi: 10.1016/j.combustflame.2021.111653 |
| [54] |
Mei B, Zhang X, Ma S, Cui M, Guo H, et al. 2019. Experimental and kinetic modeling investigation on the laminar flame propagation of ammonia under oxygen enrichment and elevated pressure conditions. Combustion and Flame 210:236−46 doi: 10.1016/j.combustflame.2019.08.033 |
| [55] |
Sabia P, Manna MV, Cavaliere A, Ragucci R, de Joannon M. 2020. Ammonia oxidation features in a jet stirred flow reactor. The role of NH2 chemistry. Fuel 276:118054 doi: 10.1016/j.fuel.2020.118054 |