[1]

Chen Y, Liao C, Tan Z, He M. 2021. Who needs myopia control? International Journal of Ophthalmology 14:1297−301

doi: 10.18240/ijo.2021.09.01
[2]

Zhou L, Xing C, Qiang W, Hua C, Tong L. 2022. Low-intensity, long-wavelength red light slows the progression of myopia in children: an Eastern China-based cohort. Ophthalmic and Physiological Optics 42:335−44

doi: 10.1111/opo.12939
[3]

Wong CW, Tsai A, Jonas JB, Ohno-Matsui K, Chen J, et al. 2021. Digital screen time during the COVID-19 pandemic: risk for a further myopia boom. American Journal of Ophthalmology 223:333−37

doi: 10.1016/j.ajo.2020.07.034
[4]

Dong J, Zhu Z, Xu H, He M. 2020. Myopia control effect of repeated low-level red light therapy in Chinese children: a randomized, double-blind, controlled clinical trial. Ophthalmology 130:198−204

doi: 10.1016/j.ophtha.2022.08.024
[5]

Tang J, Liao Y, Yan N, Dereje SB, Wang J, et al. 2023. EEfficacy of repeated low-level red-light therapy for slowing the progression of childhood myopia: a systematic review and meta-analys. American Journal of Ophthalmology 252:153−63

doi: 10.1016/j.ajo.2023.03.036
[6]

Lam C, Tang W, Tse D, Lee R, Chun R, et al. 2020. Defocus Incorporated Multiple Segments (DIMS) spectacle lenses slow myopia progression: a 2-year randomised clinical trial. British Journal of Ophthalmology 104(3):363−368

doi: 10.1136/bjophthalmol-2018-313739
[7]

Li Y, Fu Y, Wang K, Liu Z, Shi X , et al. 2020. Evaluating the myopia progression control efficacy of defocus incorporated multiple segments (DIMS) lenses and Apollo progressive addition spectacle lenses (PALs) in 6- to 12-year-old children: study protocol for a prospective, multicenter, randomized controlled trial. Trials 21(1):279

doi: 10.1186/s13063-020-4095-8
[8]

Huang J, Wen D, Wang Q, McAlinden C, Flitcroft I, et al. 2016. Efficacy Comparison of 16 Interventions for Myopia Control in Children: A Network Meta-analysis. Ophthalmology 123:697−708

doi: 10.1016/j.ophtha.2015.11.010
[9]

Xiong F, Mao T, Liao H, Hu X, Shang L, et al. 2021. Orthokeratology and low-intensity laser therapy for slowing the progression of myopia in children. BioMed Research International 2021:8915867

doi: 10.1155/2021/8915867
[10]

Jiang Y, Zhu Z, Tan X, Kong X, Zhong H, et al. 2022. Effect of repeated low-level redlight therapy in myopia control in children: a multi center randomized controlled trial. Ophthalmology 129:509−19

doi: 10.1016/j.ophtha.2021.11.023
[11]

Zhang S, Zhang G, Zhou X, Xu R, Wang S, et al. 2019. Changes in choroidal thickness and choroidal blood perfusion in Guinea pig myopia. Investigative Ophthalmology & Visual Science 60:3074−83

doi: 10.1167/iovs.18-26397
[12]

Zhou X, Zhang S, Zhang G, Chen Y, Lei Y, et al. 2020. Increased choroidal blood perfusion can inhibit form deprivation myopia in Guinea pigs. Investigative Opthalmology & Visual Science 61:25

doi: 10.1167/iovs.61.13.25
[13]

Zhang P, Zhang X, Zhu H. 2023. Photobiomodulation at 660 nm promotes collagen synthesis via downregulation of HIF-1α expression without photodamage in human scleral fibroblasts in vitro in a hypoxic environment. Graefe's Archive for Clinical and Experimental Ophthalmology 19:2535−45

doi: 10.1007/s00417-023-06066-5
[14]

Zhang P, Zhu H. 2022. Light signaling and myopia development: a review. Ophthalmology and Therapy 11(3):939−57

doi: 10.1007/s40123-022-00490-2
[15]

Sun JR, Du ZQ, Wu GY. 2024. Efficacy comparison of repeated low-level red-light therapy and orthokeratology lenses for myopia control. Optometry and Vision Science 101(11):660−65

doi: 10.1097/OPX.0000000000002197
[16]

Chen Y, Xiong R, Chen X, Zhang J, Bulloch G. 2022. Efficacy comparison of repeated low-level red light and low-dose atropine for myopia control: a randomized controlled trial. Translational Vision Science & Technology 11(10):33

doi: 10.1167/tvst.11.10.33
[17]

Liu H, Yang Y, Guo J, Peng J, Zhao P. 2023. Retinal damage after repeated low-level red-light laser exposure. JAMA Ophthalmology 141:693−95

doi: 10.1001/jamaophthalmol.2023.1548