[1] |
Grüneberg H. 1936. Haploids in polyembryonic seeds of Sea Island cotton. Journal of Heredity 27(6):229−32 doi: 10.1093/oxfordjournals.jhered.a104214 |
[2] |
Edger PP, Poorten TJ, VanBuren R, Hardigan MA, Colle M, et al. 2019. Origin and evolution of the octoploid strawberry genome. Nature Genetics 51(3):541−47 doi: 10.1038/s41588-019-0356-4 |
[3] |
Sattler MC, Carvalho CR, Clarindo WR. 2016. The polyploidy and its key role in plant breeding. Planta 243(2):281−96 doi: 10.1007/s00425-015-2450-x |
[4] |
Liao T, Cheng S, Zhu X, Min Y, Kang X. 2016. Effects of triploid status on growth, photosynthesis, and leaf area in Populus. Trees 30(4):1137−47 doi: 10.1007/s00468-016-1352-2 |
[5] |
Ewald D, Ulrich K, Naujoks G, Schröder MB. 2009. Induction of tetraploid poplar and black locust plants using colchicine: chloroplast number as an early marker for selecting polyploids in vitro. Plant Cell, Tissue and Organ Culture 99(3):353−57 doi: 10.1007/s11240-009-9601-3 |
[6] |
Sreekumari MT, Jos JS, Nair SG. 1999. 'Sree Harsha': a superior triploid hybrid in cassava. Euphytica 106(1):1−6 doi: 10.1023/A:1003473118487 |
[7] |
Cuenca J, Aleza P, Juárez J, Pina JA, Navarro L. 2010. 'Safor' mandarin: a new citrus mid-late triploid hybrid. HortScience 45(6):977−80 doi: 10.21273/HORTSCI.45.6.977 |
[8] |
Ramsey J, Schemske DW. 1998. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annual Review of Ecology and Systematics 29:467−501 doi: 10.1146/annurev.ecolsys.29.1.467 |
[9] |
Sedov EN, Sedysheva GA, Serova ZM, Gorbacheva NG, Melnik SA. 2014. Breeding assessment of heteroploid crosses in the development of triploid apple varieties. Russian Journal of Genetics: Applied Research 4:52−59 doi: 10.1134/S2079059714010109 |
[10] |
Chagné D, Kirk C, Whitworth C, Erasmuson S, Bicknell R, et al. 2015. Polyploid and aneuploid detection in apple using a single nucleotide polymorphism array. Tree Genetics & Genomes 11(5):94 doi: 10.1007/s11295-015-0920-8 |
[11] |
Migicovsky Z, Gardner KM, Richards C, Chao CT, Schwaninger HR, et al. 2021. Genomic consequences of apple improvement. Horticulture Research 8(1):9 doi: 10.1038/s41438-020-00441-7 |
[12] |
Pereira-Lorenzo S, Ramos-Cabrer AM, Díaz-Hernández MB. 2007. Evaluation of genetic identity and variation of local apple cultivars (Malus× domestica Borkh.) from Spain using microsatellite markers. Genetic Resources and Crop Evolution 54:405−20 doi: 10.1007/s10722-006-0003-7 |
[13] |
Sedysheva GA, Gorbacheva NG. 2013. Estimation of new tetraploid apple forms as donors of diploid gametes for selection on a polyploidy level. Universal Journal of Plant Science 1:49−54 doi: 10.13189/ujps.2013.010204 |
[14] |
Sedov EN, Sedysheva GA, Makarkina MA, Serova ZM. 2017. Development of triploid apple cultivars as a priority in selection. Russian Journal of Genetics: Applied Research 7:773−80 doi: 10.1134/S2079059717070073 |
[15] |
Brown S. 2012. Apple. In Fruit Breeding, eds. Badenes ML, Byrne DH. Boston, MA: Springer. Vol. 8. pp. 329–67. DOI: 10.1007/978-1-4419-0763-9_10 |
[16] |
Watts S, Migicovsky Z, McClure KA, Yu CHJ, Amyotte B, et al. 2021. Quantifying apple diversity: a phenomic characterization of Canada's Apple Biodiversity Collection. Plants People Planet 3(6):747−60 doi: 10.1002/ppp3.10211 |
[17] |
Migicovsky Z, Douglas GM, Myles S. 2022. Genotyping-by-sequencing of Canada's apple biodiversity collection. Frontiers in Genetics 13:934712 doi: 10.3389/fgene.2022.934712 |
[18] |
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, et al. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics 81(3):559−75 doi: 10.1086/519795 |
[19] |
Purcell S. 2009. PLINK v. 1.07. http://pngu.mgh.harvard.edu/purcell/plink/ |
[20] |
Bretting P. 2022. The National Plant Germplasm System: 2022 status, prospects, and challenges. https://escop.info/wp-content/uploads/2022/06/2022-NPGS-Briefing-Bretting-for-NPGCC-5-June-22.pdf |
[21] |
R Core Team. 2020. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. www.r-project.org |
[22] |
Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, et al. 2007. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23(19):2633−35 doi: 10.1093/bioinformatics/btm308 |
[23] |
Wickham H. 2016. Ggplot2: Elegant Graphics for Data Analysis, 2nd edition. Cham: Springer. xvi, 260 pp. doi: 10.1007/978-3-319-24277-4 |
[24] |
Gompert Z, Mock KE. 2017. Detection of individual ploidy levels with genotyping-by-sequencing (GBS) analysis. Molecular Ecology Resources 17(6):1156−67 doi: 10.1111/1755-0998.12657 |
[25] |
Larsen B, Gardner K, Pedersen C, Ørgaard M, Migicovsky Z, et al. 2018. Population structure, relatedness and ploidy levels in an apple gene bank revealed through genotyping-by-sequencing. PLoS One 13:e0201889 doi: 10.1371/journal.pone.0201889 |
[26] |
Melo ATO, Guthrie RS, Hale I. 2017. GBS-based deconvolution of the surviving North American collection of cold-hardy kiwifruit (Actinidia spp.) germplasm. PLoS One 12(1):e0170580 doi: 10.1371/journal.pone.0170580 |
[27] |
Hias N, Leus L, Davey MW, Vanderzande S, Van Huylenbroeck J, et al. 2017. Effect of polyploidization on morphology in two apple (Malus × domestica) genotypes. Horticultural Science 44(2):55−63 doi: 10.17221/7/2016-HORTSCI |
[28] |
Wójcik D, Marat M, Marasek-Ciolakowska A, Klamkowski K, Buler Z, et al. 2022. Apple autotetraploids—phenotypic characterisation and response to drought stress. Agronomy 12:161 doi: 10.3390/agronomy12010161 |
[29] |
Nybom H, Afzadi MA, Sehic J, Hertog M. 2013. DNA marker-assisted evaluation of fruit firmness at harvest and post-harvest fruit softening in a diverse apple germplasm. Tree Genetics & Genomes 9(1):279−90 doi: 10.1007/s11295-012-0554-z |
[30] |
Pilcher RLR, Celton JM, Gardiner SE, Tustin DS. 2008. Genetic markers linked to the dwarfing trait of apple rootstock 'Malling 9'. Journal of the American Society for Horticultural Science 133:100−06 doi: 10.21273/JASHS.133.1.100 |
[31] |
Husband BC. 2004. The role of triploid hybrids in the evolutionary dynamics of mixed-ploidy populations. Biological Journal of the Linnean Society 82(4):537−46 doi: 10.1111/j.1095-8312.2004.00339.x |
[32] |
Kumar SK, Wojtyna N, Dougherty L, Xu K, Peck G. 2021. Classifying cider apple germplasm using genetic markers for fruit acidity. Journal of the American Society for Horticultural Science 146(4):267−75 doi: 10.21273/JASHS05056-21 |
[33] |
Chagné D, Krieger C, Rassam M, Sullivan M, Fraser J, et al. 2012. QTL and candidate gene mapping for polyphenolic composition in apple fruit. BMC Plant Biology 12:12 doi: 10.1186/1471-2229-12-12 |
[34] |
Khan SA, Chibon PY, de Vos RCH, Schipper BA, Walraven E, et al. 2012. Genetic analysis of metabolites in apple fruits indicates an mQTL hotspot for phenolic compounds on linkage group 16. Journal of Experimental Botany 63(8):2895−908 doi: 10.1093/jxb/err464 |
[35] |
Li Y, Yang J, Song L, Qi Q, Du K, et al. 2019. Study of variation in the growth, photosynthesis, and content of secondary metabolites in Eucommia triploids. Trees 33(3):817−26 doi: 10.1007/s00468-019-01818-5 |
[36] |
Guo L, Zhang J, Liu X, Rao G. 2019. Polyploidy-related differential gene expression between diploid and synthesized allotriploid and allotetraploid hybrids of Populus. Molecular Breeding 39(5):69 doi: 10.1007/s11032-019-0975-6 |
[37] |
Hagen ER, Mason CM. 2024. Differences in pathogen resistance between diploid and polyploid plants: a systematic review and meta-analysis. Oikos 2024(5):e09908 doi: 10.1111/oik.09908 |