[1]

Reddy MSS, Chen F, Shadle G, Jackson L, Aljoe H, et al. 2005. Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa (Medicago sativa L.). Proceedings of the National Academy of Sciences of the United States of America 102:16573−78

doi: 10.1073/pnas.0505749102
[2]

Zhang H, Jia S, Zhang M, Wang K, Teng F, et al. 2022. Deciphering the regulatory network of miR156 in plant architecture and abiotic stress resistance of alfalfa (Medicago sativa) by transcriptome sequencing. Industrial Crops and Products 189:115828

doi: 10.1016/j.indcrop.2022.115828
[3]

Deavall DG, Martin EA, Horner JM, Ruth R. 2012. Drug-induced oxidative stress and toxicity. Journal of Toxicology 2012:645460

doi: 10.1155/2012/645460
[4]

Edwards R, Dixon DP. 2005. Plant glutathione transferases. Methods in Enzymology 401:169−86

doi: 10.1016/S0076-6879(05)01011-6
[5]

Moons A. 2005. Regulatory and functional interactions of plant growth regulators and plant glutathione S-transferases (GSTs). Vitamins & Hormones 72:155−202

doi: 10.1016/S0083-6729(05)72005-7
[6]

Smith AP, Nourizadeh SD, Peer WA, Xu JH, Bandyopadhyay A, et al. 2003. Arabidopsis AtGSTF2 is regulated by ethylene and auxin, and encodes a glutathione S-transferase that interacts with flavonoids. The Plant Journal 36:433−42

doi: 10.1046/j.1365-313X.2003.01890.x
[7]

Shi HY, Li ZH, Zhang YX, Chen L, Xiang DY, et al. 2014. Two pear glutathione S-transferases genes are regulated during fruit development and involved in response to salicylic acid, auxin, and glucose signaling. PLoS ONE 9:e89926

doi: 10.1371/journal.pone.0089926
[8]

Kao CW, Bakshi M, Sherameti I, Dong S, Reichelt M, et al. 2016. A Chinese cabbage (Brassica campetris subsp. Chinensis) τ-type glutathione-S-transferase stimulates Arabidopsis development and primes against abiotic and biotic stress. Plant Molecular Biology 92:643−59

doi: 10.1007/s11103-016-0531-2
[9]

Lallement PA, Brouwer B, Keech O, Hecker A, Rouhier N. 2014. The still mysterious roles of cysteine-containing glutathione transferases in plants. Frontiers in Pharmacology 5:192

doi: 10.3389/fphar.2014.00192
[10]

Lallement PA, Meux E, Gualberto JM, Prosper P, Didierjean C, et al. 2014. Structural and enzymatic insights into Lambda glutathione transferases from Populus trichocarpa, monomeric enzymes constituting an early divergent class specific to terrestrial plants. Biochemical Journal 462:39−52

doi: 10.1042/bj20140390
[11]

Rezaei MK, Shobbar ZS, Shahbazi M, Abedini R, Zare S. 2013. Glutathione S-transferase (GST) family in barley: identification of members, enzyme activity, and gene expression pattern. Journal of Plant Physiology 170:1277−84

doi: 10.1016/j.jplph.2013.04.005
[12]

Cui XY, Gao Y, Guo J, Yu TF, Zheng WJ, et al. 2019. BES/BZR transcription factor TaBZR2 positively regulates drought responses by cctivation of TaGST1. Plant Physiology 180:605−20

doi: 10.1104/pp.19.00100
[13]

Song Y, Yu K, Zhang S, Li Y, Xu C, et al. 2024. Poplar glutathione S-transferase PtrGSTF8 contributes to reactive oxygen species scavenging and salt tolerance. Plant Physiology and Biochemistry 212:108766

doi: 10.1016/j.plaphy.2024.108766
[14]

Horváth E, Bela K, Gallé Á, Riyazuddin R, Csomor G, et al. 2020. Compensation of mutation in Arabidopsis glutathione transferase (AtGSTU) genes under control or salt stress conditions. International Journal of Molecular Sciences 21(7):2349

doi: 10.3390/ijms21072349
[15]

Xu J, Tian YS, Xing XJ, Peng RH, Zhu B, et al. 2016. Over-expression of AtGSTU19 provides tolerance to salt, drought and methyl viologen stresses in Arabidopsis. Physiologia Plantarum 156:164−75

doi: 10.1111/ppl.12347
[16]

Sharma R, Sahoo A, Devendran R, Jain M. 2014. Over-expression of a rice tau class glutathione S-transferase gene improves tolerance to salinity and oxidative stresses in Arabidopsis. PLoS ONE 9(3):e92900

doi: 10.1371/journal.pone.0092900
[17]

Yu S, Wu J, Sun Y, Zhu H, Sun Q, et al. 2022. A calmodulin-like protein (CML10) interacts with cytosolic enzymes GSTU8 and FBA6 to regulate cold tolerance. Plant Physiology 190:1321−33

doi: 10.1093/plphys/kiac311
[18]

Xu J, Xing XJ, Tian YS, Peng RH, Xue Y, et al. 2015. Transgenic Arabidopsis plants expressing tomato glutathione S-transferase showed enhanced resistance to salt and drought stress. PLoS ONE 10:e0136960

doi: 10.1371/journal.pone.0136960
[19]

Niu MX, Feng CH, Liu M, Liu X, Liu S, et al. 2024. Genome-wide identification of poplar GSTU gene family and its PtrGSTU23 and PtrGSTU40 to improve salt tolerance in poplar. Industrial Crops and Products 209:117945

doi: 10.1016/j.indcrop.2023.117945
[20]

Lv W, Jiang H, Cao Q, Ren H, Wang X, et al. 2024. A tau class glutathione S-transferase in tea plant, CsGSTU45, facilitates tea plant susceptibility to Colletotrichum camelliae infection mediated by jasmonate signaling pathway. The Plant Journal 117:1356−76

doi: 10.1111/tpj.16567
[21]

Jia B, Sun M, Sun X, Li R, Wang Z, et al. 2016. Overexpression of GsGSTU13 and SCMRP in Medicago sativa confers increased salt-alkaline tolerance and methionine content. Physiologia Plantarum 156:176−89

doi: 10.1111/ppl.12350
[22]

Hasan MS, Singh V, Islam S, Islam MS, Ahsan R, et al. 2021. Genome-wide identification and expression profiling of glutathione S-transferase family under multiple abiotic and biotic stresses in Medicago truncatula L. PLoS ONE 16(2):e0247170

doi: 10.1371/journal.pone.0247170
[23]

Li J, Ma M, Sun Y, Lu P, Shi H, et al. 2022. Comparative physiological and transcriptome profiles uncover salt tolerance mechanisms in alfalfa. Frontiers in Plant Science 13:931619

doi: 10.3389/fpls.2022.931619
[24]

Shen C, Du H, Chen Z, Lu H, Zhu F, et al. 2020. The chromosome-level genome sequence of the autotetraploid alfalfa and resequencing of core germplasms provide genomic resources for alfalfa research. Molecular Plant 13:1250−61

doi: 10.1016/j.molp.2020.07.003
[25]

Yan J, Liu Y, Yang L, He H, Huang Y, et al. 2021. Cell wall β-1,4-galactan regulated by BPC1/BPC2-GALS1 module aggravates salt sensitivity in Arabidopsis thaliana. Molecular Plant 14:411−25

doi: 10.1016/j.molp.2020.11.023
[26]

Huang S, Chen M, Zhao Y, Wen X, Lu S. 2020. CBL4-CIPK5 pathway confers salt but not drought and chilling tolerance by regulating ion homeostasis. Environmental and Experimental Botany 179:104230

doi: 10.1016/j.envexpbot.2020.104230
[27]

Xu Y, Hu W, Liu J, Zhang J, Jia C, et al. 2014. A banana aquaporin gene, MaPIP1;1, is involved in tolerance to drought and salt stresses. BMC Plant Biology 14:59

doi: 10.1186/1471-2229-14-59
[28]

Guo Z, Tan J, Zhuo C, Wang C, Xiang B, et al. 2014. Abscisic acid, H2O2 and nitric oxide interactions mediated cold-induced S-adenosylmethionine synthetase in Medicago sativa subsp. falcata that confers cold tolerance through up-regulating polyamine oxidation. Plant Biotechnology Journal 12:601−12

doi: 10.1111/pbi.12166
[29]

Gou L, Zhuo C, Lu S, Guo Z. 2020. A universal stress protein from Medicago falcata (MfUSP1) confers multiple stress tolerance by regulating antioxidant defense and proline accumulation. Environmental and Experimental Botany 178:104168

doi: 10.1016/j.envexpbot.2020.104168
[30]

Zelm EV, Zhang Y, Testerink C. 2020. Salt tolerance mechanisms of plants. Annual Review of Plant Biology 71:403−33

doi: 10.1146/annurev-arplant-050718-100005
[31]

Zhao C, Zhang H, Song C, Zhu JK, Shabala S. 2020. Mechanisms of plant responses and adaptation to soil salinity. Innovation 1:100017

doi: 10.1016/j.xinn.2020.100017
[32]

Vaish S, Gupta D, Mehrotra R, Mehrotra S, Basantani MK. 2020. Glutathione S-transferase: a versatile protein family. 3 Biotech 10(7):321

doi: 10.1007/s13205-020-02312-3
[33]

Lu C, Zhang P, Li S, Cheng M, Duan D. 2023. Isolation and characterization of glutathione S-transferase genes and their transcripts in Saccharina japonica (Laminariales, Phaeophyceae) during development and under abiotic stress. BMC Plant Biology 23(1):436

doi: 10.1186/s12870-023-04430-5
[34]

Kumar RS, Sinha H, Datta T, Asif MH, Trivedi PK. 2023. microRNA408 and its encoded peptide regulate sulfur assimilation and arsenic stress response in Arabidopsis. Plant Physiology 192:837−56

doi: 10.1093/plphys/kiad033
[35]

Wang Y, Zhang WZ, Song LF, Zou JJ, Su Z, et al. 2008. Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiology 148(3):1201−11

doi: 10.1104/pp.108.126375
[36]

Meng H, Zhao J, Yang Y, Diao K, Zheng G, et al. 2023. PeGSTU58, a Glutathione S-transferase from Populus euphratica, enhances salt and drought stress tolerance in transgenic Arabidopsis. International Journal of Molecular Sciences 24(11):9354

doi: 10.3390/ijms24119354
[37]

Zhao YW, Wang CK, Huang XY, Hu DG. 2021. Genome-wide analysis of the glutathione S-transferase (GST) genes and functional identification of MdGSTU12 reveals the involvement in the regulation of anthocyanin accumulation in apple. Genes 12:1733

doi: 10.3390/genes12111733
[38]

Du B, Zhao W, An Y, Li Y, Zhang X, et al. 2019. Overexpression of an alfalfa glutathione S-transferase gene improved the saline-alkali tolerance of transgenic tobacco. Biology Open 8(9):bio043505

doi: 10.1242/bio.043505
[39]

Li X, Pang Y, Zhong Y, Cai Z, Ma Q, et al. 2023. GmGSTU23 encoding a Tau class glutathione S-transferase protein enhances the salt tolerance of soybean (Glycine max L.). International Journal of Molecular Sciences 24(6):5547

doi: 10.3390/ijms24065547
[40]

Kissoudis C, Kalloniati C, Flemetakis E, Madesis P, Labrou NE, et al. 2015. Stress-inducible GmGSTU4 shapes transgenic tobacco plants metabolome towards increased salinity tolerance. Acta Physiologiae Plantarum 37:102

doi: 10.1007/s11738-015-1852-5
[41]

Zhu JK. 2016. Abiotic stress signaling and responses in plants. Cell 167:313−24

doi: 10.1016/j.cell.2016.08.029
[42]

Verslues PE, Batelli G, Grillo S, Agius F, Kim YS, et al. 2007. Interaction of SOS2 with nucleoside diphosphate kinase 2 and catalases reveals a point of connection between salt stress and H2O2 signaling in Arabidopsis thaliana. Molecular and Cellular Biology 27(22):7771−80

doi: 10.1128/MCB.00429-07
[43]

Gong Z, Koiwa H, Cushman MA, Ray A, Bufford D, et al. 2001. Genes that are uniquely stress regulated in salt overly sensitive (sos) mutants. Plant Physiology 126:363−75

doi: 10.1104/pp.126.1.363
[44]

Yang Y, Guo Y. 2018. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytologist 217(2):523−39

doi: 10.1111/nph.14920
[45]

Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell & Environment 33(4):453−67

doi: 10.1111/j.1365-3040.2009.02041.x