[1]

Qu B, Zhang W, Chen X, Li N, Cui N, et al. 2010. Advances in flower bud differentiation of plants. Chinese Agricultural Science Bulletin 26(24):109−14

[2]

Zhou Q, Zhang S, Bao M, Liu G. 2018. Advances in molecular mechanisms of flower induction in higher plants. Molecular Plant Breeding 16(11):3681−92

doi: 10.13271/j.mpb.016.003681
[3]

Peng L. 2006. Molecular mechanisms controlling photoperiodic pathways in flowering time of Arabidopsis thaliana and rice. Plant Physiology Communication 42(06):1021−31

[4]

Pajoro A, Biewers S, Dougali E, Leal Valentim F, Mendes MA, et al. 2014. The (r)evolution of gene regulatory networks controlling Arabidopsis plant reproduction: a two-decade history. Journal of Experimental Botany 65(17):4731−45

doi: 10.1093/jxb/eru233
[5]

D'Aloia M, Bonhomme D, Bouché F, Tamseddak K, Ormenese S, et al. 2011. Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF. The Plant Journal 65(6):972−79

doi: 10.1111/j.1365-313X.2011.04482.x
[6]

Domagalska MA, Schomburg FM, Amasino RM, Vierstra RD, Nagy F, et al. 2007. Attenuation of brassinosteroid signaling enhances FLC expression and delays flowering. Development 134(15):2841−50

doi: 10.1242/dev.02866
[7]

Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS, et al. 2007. Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes & Development 21(4):397−402

doi: 10.1101/gad.1518407F
[8]

Lee YS, Jeong DH, Lee DY, Yi J, Ryu CH, et al. 2010. OsCOL4 is a constitutive flowering repressor upstream of Ehd1 and downstream of OsphyB. The Plant Journal 63(1):18−30

doi: 10.1111/j.1365-313X.2010.04226.x
[9]

Castro Marín I, Loef I, Bartetzko L, Searle I, Coupland G, et al. 2011. Nitrate regulates floral induction in Arabidopsis, acting independently of light, gibberellin and autonomous pathways. Planta 233(3):539−52

doi: 10.1007/s00425-010-1316-5
[10]

Wahl V, Ponnu J, Schlereth A, Arrivault S, Langenecker T, et al. 2013. Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana. Science 339(6120):704−07

doi: 10.1126/science.1230406
[11]

Wu G, Park MY, Conway SR, Wang JW, Weigel D, et al. 2009. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138(4):750−59

doi: 10.1016/j.cell.2009.06.031
[12]

Pan W, Li J, Du Y, Zhao Y, Xin Y, et al. 2023. Epigenetic silencing of callose synthase by VIL1 promotes bud-growth transition in lily bulbs. Nature Plants 9(9):1451−67

doi: 10.1038/s41477-023-01492-z
[13]

Ning Y, Long M, Tao J, Yang M, Wei P. 2008. Morphological observation on flower bud differentiation of Lilium for-molongi Bulb. Journal of Horticulture 35:1368−72

doi: 10.3321/j.issn:0513-353X.2008.09.019
[14]

Smyth DR. 2005. Morphogenesis of flowers-our evolving view. The Plant Cell 17(2):330−41

doi: 10.1105/tpc.104.030353
[15]

Luo Y, Xie W, Ma K. 2007. Changes in endogenous hormone contents during flower bud differentiation of Ficus carica L. Acta Botanica Boreali-Occidentalia Sinica 2007:1399−404

[16]

Wan X, Zou LH, Pan X, Ge Y, Jin L, et al. 2024. Auxin and carbohydrate control flower bud development in Anthurium andraeanum during early stage of sexual reproduction. BMC Plant Biology 24(1):159

doi: 10.1186/s12870-024-04869-0
[17]

Chakraborty A, Chaudhury R, Dutta S, Basak M, Dey S, et al. 2022. Role of metabolites in flower development and discovery of compounds controlling flowering time. Plant Physiology and Biochemistry 190:109−18

doi: 10.1016/j.plaphy.2022.09.002
[18]

Li X, Yang L, Chen M, Wang Z, Xu J, et al. 2020. Hormone change during dormancy and flower bud differentiation process in Lilium oriental × trumpet hybrid 'Conca D'Or'. Chinese Agricultural Science Bulletin 36(35):42−47

[19]

Wang A, Tang J, Zhao X, Zhu L. 2008. Isolation of LiLFY1 and Its expression in lily (Lilium longiflorum Thunb.). Agricultural Sciences in China 7:1077−83

doi: 10.1016/S1671-2927(08)60149-2
[20]

Yan X, Cao QZ, He HB, Wang LJ, Jia GX. 2021. Functional analysis and expression patterns of members of the FLOWERING LOCUS T (FT) gene family in Lilium. Plant Physiology and Biochemistry 163:250−60

doi: 10.1016/j.plaphy.2021.03.056
[21]

Li Y. 2017. Study on the molecular mechanism of photoperiod induced flowering transformation of new iron gun lily. Thesis. Beijing Forestry University, China

[22]

Andrés F, Coupland G. 2012. The genetic basis of flowering responses to seasonal cues. Nature Reviews Genetics 13(9):627−39

doi: 10.1038/nrg3291
[23]

Liu X, Wang Q, Gu J, Lü Y. 2014. Vernalization of Oriental hybrid lily 'Sorbonne': changes in physiology metabolic activity and molecular mechanism. Molecular Biology Reports 41(10):6619−34

doi: 10.1007/s11033-014-3545-3
[24]

Qin C, Bai Y, Zeng Z, Wang L, Luo Z, et al. 2018. The cutting and floating method for paraffin-embedded tissue for sectioning. Journal of Visualized Experiments 139:e58288

doi: 10.3791/58288-v
[25]

Zhang J, Gai M, Xue B, Jia N, Wang C, et al. 2017. The use of miRNAs as reference genes for miRNA expression normalization during Lilium somatic embryogenesis by real-time reverse transcription PCR analysis. Plant Cell, Tissue and Organ Culture (PCTOC) 129(1):105−18

doi: 10.1007/s11240-016-1160-9
[26]

Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, et al. 2008. KEGG for linking genomes to life and the environment. Nucleic Acids Research 36:D480−D484

doi: 10.1093/nar/gkm882
[27]

Li G, Sun YL, Sng KS, Zheng Z, Wang YJ, et al. 2021. Exploring the mechanism of Shenqisherong pill against cervical spondylotic myelopathy by network pharmacology and molecular docking. Annals of Palliative Medicine 10(10):10253−75

doi: 10.21037/apm-21-408
[28]

Wang Y, Xiu Y, Bi K, Ou J, Gu W, et al. 2017. Integrated analysis of mRNA-seq in the haemocytes of Eriocheir sinensis in response to Spiroplasma eriocheiris infection. Fish & Shellfish Immunology 68:289−98

doi: 10.1016/j.fsi.2017.07.036
[29]

Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, et al. 2021. Pfam: the protein families database in 2021. Nucleic Acids Research 49(D1):D412−D419

doi: 10.1093/nar/gkaa913
[30]

Ye C, Rasheed H, Ran Y, Yang X, Xing L, et al. 2019. Transcriptome changes reveal the genetic mechanisms of the reproductive plasticity of workers in lower termites. BMC Genomics 20(1):702

doi: 10.1186/s12864-019-6037-y
[31]

Zhang Y, Zhang X, Mi L, Li C, Zhang Y, et al. 2022. Comparative proteomic analysis of proteins in breast milk during different lactation periods. Nutrients 14(17):3648

doi: 10.3390/nu14173648
[32]

Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, et al. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology 28(5):511−15

doi: 10.1038/nbt.1621
[33]

Liu Y, Yang J, Yang M. 2015. Pathways of flowering regulation in plants. Chinese Journal of Biotechnology 31(11):1553−66

[34]

Xie Y, Hou Z, Shi M, Wang Q, Yang Z, et al. 2023. Transcriptional regulation of female and male flower bud initiation and development in Pecan (Carya illinoensis). Plants 12(6):1378

doi: 10.3390/plants12061378
[35]

Cheng G, Zhang F, Shu X, Wang N, Wang T, et al. 2022. Identification of differentially expressed genes related to floral bud differentiation and flowering time in three populations of Lycoris radiata. International Journal of Molecular Sciences 23(22):14036

doi: 10.3390/ijms232214036
[36]

Schönrock N, Bouveret R, Leroy O, Borghi L, Köhler C, et al. 2006. Polycomb- group proteins repress the floral activator AGL19 in the FLC-independent vernalization pathway. Genes & Development 20(12):1667−78

doi: 10.1101/gad.377206
[37]

Yao Y, Wang X. 2015. Molecular mechanisms of flowering in Arabidopsis thaliana. Journal of Anhui Agricultural Sciences 43(09):7−10

doi: 10.3969/j.issn.0517-6611.2015.09.002
[38]

Lim MH, Kim J, Kim YS, Chung KS, Seo YH, et al. 2004. A new Arabidopsis gene, FLK, encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C. The Plant Cell 16(3):731−40

doi: 10.1105/tpc.019331
[39]

Liu Z, Wu X, Cheng M, Xie Z, Xiong C, et al. 2020. Identification and functional characterization of SOC1-like genes in Pyrus bretschneideri. Genomics 112(2):1622−32

doi: 10.1016/j.ygeno.2019.09.011
[40]

MacKnight R, Bancroft I, Page T, Lister C, Schmidt R, et al. 1997. FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell 89(5):737−45

doi: 10.1016/S0092-8674(00)80256-1
[41]

Wang H, Huang H, Shang Y, Song M, Ma H. 2022. Identification and characterization of auxin response factor (ARF) family members involved in fig (Ficus carica L.) fruit development. PeerJ 10:e13798

doi: 10.7717/peerj.13798
[42]

Noh YS, Amasino RM. 2003. PIE1, an ISWI family gene, is required for FLC activation and floral repression in Arabidopsis. The Plant Cell 15(7):1671−82

doi: 10.1105/tpc.012161
[43]

Kawamura M, Ito S, Nakamichi N, Yamashino T, Mizuno T. 2008. The function of the clock-associated transcriptional regulator CCA1 (CIRCADIAN CLOCK-ASSOCIATED 1) in Arabidopsis thaliana. Bioscience, Biotechnology, and Biochemistry 72(5):1307−16

doi: 10.1271/bbb.70804
[44]

Lu SX, Webb CJ, Knowles SM, Kim SHJ, Wang Z, et al. 2012. CCA1 and ELF3 interact in the control of hypocotyl length and flowering time in Arabidopsis. Plant Physiology 158(2):1079−88

doi: 10.1104/pp.111.189670
[45]

Hartmann U, Höhmann S, Nettesheim K, Wisman E, Saedler H, et al. 2000. Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. The Plant Journal 21(4):351−60

doi: 10.1046/j.1365-313x.2000.00682.x
[46]

Wu R, Tomes S, Karunairetnam S, Tustin SD, Hellens RP, et al. 2017. SVP-like MADS box genes control dormancy and budbreak in apple. Frontiers in Plant Science 8:477

doi: 10.3389/fpls.2017.00477
[47]

Tasaki K, Yamagishi M, Masuta C. 2020. Virus-induced gene silencing in lilies using cucumber mosaic virus vectors. In Virus-Induced Gene Silencing in Plants, eds Courdavault V, Besseau S. New York, NY: Humana. Vol 2172. pp. 1−13. doi: 10.1007/978-1-0716-0751-0_1

[48]

Yang YY, Ma B, Li YY, Han MZ, Wu J, et al. 2022. Transcriptome analysis identifies key gene LiMYB305 involved in monoterpene biosynthesis in Lilium 'Siberia'. Frontiers in Plant Science 13:1021576

doi: 10.3389/fpls.2022.1021576
[49]

Dong Y, Lu J, Liu J, Jalal A, Wang C. 2020. Genome-wide identification and functional analysis of JmjC domain-containing genes in flower development of Rosa chinensis. Plant Molecular Biology 102:417−30

doi: 10.1007/s11103-019-00955-2