[1] |
Chen Y, Wang E, Wei Z, Zheng Y, Yan R, et al. 2019. Phytochemical analysis, cellular antioxidant and α-glucosidase inhibitory activities of various herb plant organs. Industrial Crops and Products 141:111771 doi: 10.1016/j.indcrop.2019.111771 |
[2] |
Hua F, Zhou P, Wu HY, Chu GX, Xie ZW, et al. 2018. Inhibition of α-glucosidase and α-amylase by flavonoid glycosides from Lu'an GuaPian tea: molecular docking and interaction mechanism. Food & Function 9:4173−83 doi: 10.1039/C8FO00562A |
[3] |
Hou ZW, Chen CH, Ke JP, Zhang YY, Qi Y, et al. 2022. α-Glucosidase inhibitory activities and the interaction mechanism of novel spiro-flavoalkaloids from YingDe green tea. Journal of Agricultural and Food Chemistry 70:136−48 doi: 10.1021/acs.jafc.1c06106 |
[4] |
Poovitha S, Parani M. 2016. In vitro and in vivo α-amylase and alpha-glucosidase inhibiting activities of the protein extracts from two varieties of bitter gourd (Momordica charantia L). BMC Complementary and Alternative Medicine 16:185 doi: 10.1186/s12906-016-1085-1 |
[5] |
Ajmal Shah M, Khalil R, Ul-Haq Z, Panichayupakaranant P. 2017. α-Glucosidase inhibitory effect of rhinacanthins-rich extract from Rhinacanthus nasutus leaf and synergistic effect in combination with acarbose. Journal of Functional Foods 36:325−31 doi: 10.1016/j.jff.2017.07.021 |
[6] |
Ye JH, Fang QT, Zeng L, Liu RY, Lu L, et al. 2024. A comprehensive review of matcha: production, food application, potential health benefits, and gastrointestinal fate of main phenolics. Critical Reviews in Food Science and Nutrition 64:7959−80 doi: 10.1080/10408398.2023.2194419 |
[7] |
Huang Y, Goh RMV, Pua A, Liu SQ, Sakumoto S, et al. 2022. Effect of three milling processes (cyclone-, bead- and stone-millings) on the quality of matcha: Physical properties, taste and aroma. Food Chemistry 372:131202 doi: 10.1016/j.foodchem.2021.131202 |
[8] |
Devkota HP, Gaire BP, Hori K, Subedi L, Adhikari-Devkota A, et al. 2021. The science of matcha: Bioactive compounds, analytical techniques and biological properties. Trends in Food Science & Technology 118:735−43 doi: 10.1016/j.jpgs.2021.10.021 |
[9] |
Phongnarisorn B, Orfila C, Holmes M, Marshall LJ. 2018. Enrichment of biscuits with Matcha green tea powder: its impact on consumer acceptability and acute metabolic response. Foods 7:17 doi: 10.3390/foods7020017 |
[10] |
Najman K, Wolińska A, Wolinska M, Starczewska K, Buczak K. 2023. The content of bioactive compounds and technological properties of Matcha green tea and its application in the design of functional beverages. Molecules 28:7018 doi: 10.3390/molecules28207018 |
[11] |
Koláčková T, Sumczynski D, Bednařík V, Vinter Š, Orsavová J, Kolofiková K. 2021. Mineral and trace element composition after digestion and leaching into matcha ice tea infusions (Camellia sinensis L.). Journal of Food Composition and Analysis 97:103792 doi: 10.1016/j.jfca.2020.103792 |
[12] |
Ning J, Hou GG, Sun J, Wan X, Dubat A. 2017. Effect of green tea powder on the quality attributes and antioxidant activity of whole-wheat flour pan bread. LWT - Food Science and Technology 79:342−48 doi: 10.1016/j.lwt.2017.01.052 |
[13] |
Wasai M, Fujimura Y, Nonaka H, Kitamura R, Murata M, et al. 2018. Postprandial glycaemia-lowering effect of a green tea cultivar Sunrouge and cultivar-specific metabolic profiling for determining bioactivity-related ingredients. Scientific Reports 8:16041 doi: 10.1038/s41598-018-34316-8 |
[14] |
Yan S, Shao H, Zhou Z, Wang Q, Zhao L, et al. 2018. Non-extractable polyphenols of green tea and their antioxidant, anti-α-glucosidase capacity, and release during in vitro digestion. Journal of Functional Foods 42:129−36 doi: 10.1016/j.jff.2018.01.006 |
[15] |
Satoh T, Igarashi M, Yamada S, Takahashi N, Watanabe K. 2015. Inhibitory effect of black tea and its combination with acarbose on small intestinal α-glucosidase activity. Journal of Ethnopharmacology 161:147−55 doi: 10.1016/j.jep.2014.12.009 |
[16] |
Prawira-Atmaja MI, Sugeng Harianto S, Maulana H, Rohdiana D. 2018. Physical characteristics of green tea powder processed by disc and stone mills. Jurnal Teknologi dan Industri Pangan 29:77−84 doi: 10.6066/jtip.2018.29.1.77 |
[17] |
Trinovani E, Prawira-Atmaja MI, Kusmiyati M, Harianto S, Shabri S, et al . 2022. Total polyphenols and antioxidant activities of green tea powder from GMB 7 and GMB 9 tea clones. IOP Conference Series: Earth and Environmental Science 974:012113 doi: 10.1088/1755-1315/974/1/012113 |
[18] |
Prawİra-Atmaja MI, Ula F, Maulana H, Harİanto S, Shabrİ S, et al. 2022. Effect of fixation methods and various clones of Camellia sinensis var. sinensis (L) properties and antioxidant activity of Indonesian green tea. International Journal of Secondary Metabolite 9:278−89 doi: 10.21448/ijsm.1014894 |
[19] |
Musdja MY, Rahman HA, Hasan D. 2018. Antioxidant activity of catechins isolate of Uncaria gambier Roxb in male rats. International Journal of Health and Life-Sciences 4:34−46 doi: 10.20319/lijhls.2018.42.3446 |
[20] |
Sancheti S, Sancheti S, Seo SY. 2009. Chaenomeles sinensis: a potent α-and β-glucosidase inhibitor. American Journal of Pharmacology and Toxicology 4:8−11 doi: 10.3844/ajptsp.2009.8.11 |
[21] |
Ranatunga MAB. 2019. Advances in Tea [Camellia sinensis (L.) O. kuntze] breeding. In Advances in Plant Breeding Strategies: Nut and Beverage Crops, ed. Al-Khayri J, Jain S, Johnson D. Cham: Springer. pp. 517−65. doi: 10.1007/978-3-030-23112-5_13 |
[22] |
Sriyadi B, Suprihatini R, Khomaeni HS. 2012. The development of high yielding tea clones to increase indonesian tea production. In Global Tea Breeding. Achievements, Challenges and Perspectives, ed. Chen L, Apostolides Z, Chen ZM. Heidelberg: Springer Berlin. pp. 299−308. doi: 10.1007/978-3-642-31878-8_10 |
[23] |
Fauziah F, Permana AD, Faizal A. 2022. Characterization of volatile compounds from tea plants (Camellia sinensis (L.) Kuntze) and the effect of identified compounds on Empoasca flavescens behavior. Horticulturae 8:623 doi: 10.3390/horticulturae8070623 |
[24] |
Rahadi VP, Khomaeni HS, Chaidir L, Martono B. 2016. Genetic diversity and relationships of tea germplasm collection based on leaf morphology character and yield component. Jurnal Tanaman Industri dan Penyegar 3:103 doi: 10.21082/jtidp.v3n2.2016.p103-108 |
[25] |
Sriyadi B. 2011. Superior sinensis tea clones release of GMBS 1, GMBS 2, GMBS 3, GMBS 4, and GMBS 5. Jurnal Penelitian Teh dan Kina 14:59−71 |
[26] |
Prayoga MK, Syahrian H, Rahadi VP, Atmaja MIP, Maulana H, et al. 2022. Quality diversity of 35 tea clones (Camellia sinensis var. sinensis) processed for green tea. Biodiversitas Journal of Biological Diversity 23 |
[27] |
Wu J, Ouyang Q, Park B, Kang R, Wang Z, et al. 2022. Physicochemical indicators coupled with multivariate analysis for comprehensive evaluation of matcha sensory quality. Food Chemistry 371:131100 doi: 10.1016/j.foodchem.2021.131100 |
[28] |
Jakubczyk K, Kochman J, Kwiatkowska A, Kałduńska J, Dec K, et al. 2020. Antioxidant properties and nutritional composition of Matcha green tea. Foods 9:483 doi: 10.3390/foods9040483 |
[29] |
Zhou J, Yu Y, Ding L, Xu P, Wang Y. 2021. Matcha green tea alleviates non-alcoholic fatty liver disease in high-fat diet-induced obese mice by regulating lipid metabolism and inflammatory responses. Nutrients 13:1950 doi: 10.3390/nu13061950 |
[30] |
Topuz A, Dİnçer C, Torun M, Tontul İ, Şahİn-Nadeem H, et al. 2014. Physicochemical properties of Turkish green tea powder: effects of shooting period, shading, and clone. Turkish Journal of Agriculture and Forestry 38:233−41 doi: 10.3906/tar-1307-17 |
[31] |
Koláčková T, Kolofiková K, Sytařová I, Snopek L, Sumczynski D, et al. 2020. Matcha tea: analysis of nutritional composition, phenolics and antioxidant activity. Plant Foods for Human Nutrition 75:48−53 doi: 10.1007/s11130-019-00777-z |
[32] |
Komes D, Horžić D, Belščak A, Ganić KK, Vulić I. 2010. Green tea preparation and its influence on the content of bioactive compounds. Food Research International 43:167−76 doi: 10.1016/j.foodres.2009.09.022 |
[33] |
Hu J, Chen Y, Ni D. 2012. Effect of superfine grinding on quality and antioxidant property of fine green tea powders. LWT - Food Science and Technology 45:8−12 doi: 10.1016/j.lwt.2011.08.002 |
[34] |
Thi Anh Dao D, Van Thanh H, Viet Ha D, Duc Nguyen V. 2021. Optimization of spray-drying process to manufacture green tea powder and its characters. Food Science & Nutrition 9:6566−74 doi: 10.1002/fsn3.2597 |
[35] |
Nakamura E, Tomita I, Matsuura T. 2018. Composition and functionality of “matcha” of different qualities. Japanese Journal of Food Chemistry and Safety 25:7−14 |
[36] |
Farooq S, Sehgal A. 2018. Antioxidant activity of different forms of green tea: Loose leaf, Bagged and Matcha. Current Research in Nutrition and Food Science Journal 6:35−40 doi: 10.12944/CRNFSJ.6.1.04 |
[37] |
Haraguchi Y, Imada Y, Sawamura SI. 2003. Production and characterization of fine Matcha for processed food. Journal of the Japanese Society for Food Science and Technology 50:468−73 doi: 10.3136/nskkk.50.468 |
[38] |
Fujioka K, Iwamoto T, Shima H, Tomaru K, Saito H, et al. 2016. The powdering process with a set of ceramic mills for green tea promoted catechin extraction and the ROS inhibition effect. Molecules 21:474 doi: 10.3390/molecules21040474 |
[39] |
Ramachandraiah K, Chin KB. 2016. Evaluation of ball-milling time on the physicochemical and antioxidant properties of persimmon by-products powder. Innovative Food Science & Emerging Technologies 37:115−24 doi: 10.1016/j.ifset.2016.08.005 |
[40] |
Sivanesan I, Gopal J, Muthu M, Chun S, Oh J-W. 2021. Retrospecting the antioxidant activity of Japanese Matcha green tea–lack of enthusiasm? Applied Sciences 11:5078 doi: 10.3390/app11115087 |
[41] |
Sakurai K, Shen C, Ezaki Y, Inamura N, Fukushima Y, et al. 2020. Effects of Matcha green tea powder on cognitive functions of community-dwelling elderly individuals. Nutrients 12:3639 doi: 10.3390/nu12123639 |
[42] |
Zaiter A, Becker L, Karam MC, Dicko A. 2016. Effect of particle size on antioxidant activity and catechin content of green tea powders. Journal of Food Science and Technology 53:2025−32 doi: 10.1007/s13197-016-2201-4 |
[43] |
Lin YS, Tsai YJ, Tsay JS, Lin JK. 2003. Factors affecting the levels of tea polyphenols and caffeine in tea leaves. Journal of Agricultural and Food Chemistry 51:1864−73 doi: 10.1021/jf021066b |
[44] |
Kochman J, Jakubczyk K, Antoniewicz J, Mruk H, Janda K. 2020. Health Benefits and Chemical Composition of Matcha Green Tea: A Review. Molecules 26:85 doi: 10.3390/molecules26010085 |
[45] |
Gramza-Michałowska A. 2014. Caffeine in tea Camellia sinensis-content, absorption, benefits and risks of consumption. J Nutr Health Aging 18:143−49 doi: 10.1007/s12603-013-0404-1 |
[46] |
Theppakorn T, Luthfiyyah A, Ploysri K. 2014. Comparison of the composition and antioxidant capacities of green teas produced from the assam and the chinese varieties cultivated in Thailand. Journal of Microbiology, Biotechnology and Food Sciences 3:364−70 |
[47] |
Tao L, Lambert JD. 2014. Antioxidant and pro-oxidant activities of green tea polyphenols in cancer prevention. In Polyphenols in Human Health and Disease, ed. Watson RR, Preedy VR, S Zibadi S. Amsterdam: Elsevier. pp. 1191−98. doi: 10.1016/b978-0-12-398456-2.00090-6 |
[48] |
Ye Y, Ai Z, Li R, Tian Y, Yang Y. 2024. Quality analysis and antioxidant activity of different types of tea powder. Food Production, Processing and Nutrition 6 |
[49] |
Shu Y, Li J, Yang X, Dong X, Wang X. 2019. Effect of particle size on the bioaccessibility of polyphenols and polysaccharides in green tea powder and its antioxidant activity after simulated human digestion. Journal of Food Science and Technology 56:1127−33 doi: 10.1007/s13197-019-03573-4 |
[50] |
Makanjuola SA. 2017. Influence of particle size and extraction solvent on antioxidant properties of extracts of tea, ginger, and tea-ginger blend. Food Science & Nutrition 5:1179−85 doi: 10.1002/fsn3.509 |
[51] |
Kan L, Capuano E, Fogliano V, Verkerk R, Mes JJ, et al. 2021. Inhibition of α-glucosidases by tea polyphenols in rat intestinal extract and Caco-2 cells grown on Transwell. Food Chemistry 361:130047 doi: 10.1016/j.foodchem.2021.130047 |
[52] |
Zhu J, Chen C, Zhang B, Huang Q. 2020. The inhibitory effects of flavonoids on α-amylase and alpha-glucosidase. Critical Reviews in Food Science and Nutrition 60:695−708 doi: 10.1080/10408398.2018.1548428 |
[53] |
Kamiyama O, Sanae F, Ikeda K, Higashi Y, Minami Y, et al. 2010. In vitro inhibition of α-glucosidases and glycogen phosphorylase by catechin gallates in green tea. Food Chemistry 122:1061−66 doi: 10.1016/j.foodchem.2010.03.075 |
[54] |
Dai T, Li T, He X, Li X, Liu C, et al. 2020. Analysis of inhibitory interaction between epigallocatechin gallate and alpha-glucosidase: A spectroscopy and molecular simulation study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 230:118023 doi: 10.1016/j.saa.2019.118023 |