[1] |
Basha RH, Sankaranarayanan C. 2016. β-Caryophyllene, a natural sesquiterpene lactone attenuates hyperglycemia mediated oxidative and inflammatory stress in experimental diabetic rats. Chemico-Biological Interactions 245:50−58 doi: 10.1016/j.cbi.2015.12.019 |
[2] |
Jassal K, Kaushal S, Rashmi, Rani R. 2021. Antifungal potential of guava (Psidium guajava) leaves essential oil, major compounds: beta-caryophyllene and caryophyllene oxide. Archives of Phytopathology and Plant Protection 54:2034−50 doi: 10.1080/03235408.2021.1968287 |
[3] |
Chen F, Tholl D, D'Auria JC, Farooq A, Pichersky E, et al. 2003. Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers. The Plant Cell 15:481−94 doi: 10.1105/tpc.007989 |
[4] |
Rasmann S, Köllner TG, Degenhardt J, Hiltpold I, Toepfer S, et al. 2005. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732−37 doi: 10.1038/nature03451 |
[5] |
Tholl D. 2015. Biosynthesis and biological functions of terpenoids in plants. In Biotechnology of Isoprenoids, eds Schrader J, Bohlmann J. Cham: Springer. Vol 148. pp. 63−106. doi: 10.1007/10_2014_295 |
[6] |
Vanholme B, Grunewald W, Bateman A, Kohchi T, Gheysen G. 2007. The tify family previously known as ZIM. Trends in Plant Science 12:239−44 doi: 10.1016/j.tplants.2007.04.004 |
[7] |
Bai Y, Meng Y, Huang D, Qi Y, Chen M. 2011. Origin and evolutionary analysis of the plant-specific TIFY transcription factor family. Genomics 98:128−36 doi: 10.1016/j.ygeno.2011.05.002 |
[8] |
Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, et al. 2010. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468:400−05 doi: 10.1038/nature09430 |
[9] |
Geerinck J, Pauwels L, De Jaeger G, Goossens A. 2010. Dissection of the one-MegaDalton JAZ1 protein complex. Plant Signaling & Behavior 5:1039−41 doi: 10.4161/psb.5.8.12338 |
[10] |
Wasternack C, Song S. 2017. Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transciption. Journal of Experimental Botany 68:1303−21 doi: 10.1093/jxb/erw443 |
[11] |
Shen J, Zou Z, Xing H, Duan Y, Zhu X, et al. 2020. Genome-wide analysis reveals stress and hormone responsive patterns of JAZ family genes in Camellia sinensis. International Journal of Molecular Sciences 21:2433 doi: 10.3390/ijms21072433 |
[12] |
Figueroa P, Browse J. 2012. The Arabidopsis JAZ2 promoter contains a G-Box and thymidine-rich module that are necessary and sufficient for jasmonate-dependent activation by MYC transcription factors and repression by JAZ proteins. Plant and Cell Physiology 53:330−43 doi: 10.1093/pcp/pcr178 |
[13] |
Hu S, Yu K, Yan J, Shan X, Xie D. 2023. Jasmonate perception: Ligand-receptor interaction, regulation, and evolution. Molecular Plant 16:23−42 doi: 10.1016/j.molp.2022.08.011 |
[14] |
Ma Y, Xu D, Li L, Zhang F, Fu X, et al. 2018. Jasmonate promotes artemisinin biosynthesis by activating the TCP14-ORA complex in Artemisia annua. Science Advances 4:eaas9357 doi: 10.1126/sciadv.aas9357 |
[15] |
Li L, Liu Y, Huang Y, Li B, Ma W, et al. 2021. Genome-wide identification of the TIFY family in Salvia miltiorrhiza reveals that SmJAZ3 interacts with SmWD40-170, a relevant protein that modulates secondary metabolism and development. Frontiers in Plant Science 12:630424 doi: 10.3389/fpls.2021.630424 |
[16] |
Wang X, Zhu N, Yang J, Zhou D, Yuan S, et al. 2024. CwJAZ4/9 negatively regulates jasmonate-mediated biosynthesis of terpenoids through interacting with CwMYC2 and confers salt tolerance in Curcuma wenyujin. Plant, Cell & Environment 47:3090−110 doi: 10.1111/pce.14930 |
[17] |
Li Y, Liu G, Ma L, Liu T, Zhang C, et al. 2020. A chromosome-level reference genome of non-heading Chinese cabbage [Brassica campestris (syn. Brassica rapa) ssp. chinensis]. Horticulture Research 7:212 doi: 10.1038/s41438-020-00449-z |
[18] |
Liu Z, Fu Y, Wang H, Zhang Y, Han J, et al. 2023. The high-quality sequencing of the Brassica rapa 'XiangQingCai' genome and exploration of genome evolution and genes related to volatile aroma. Horticulture Research 10:uhad187 doi: 10.1093/hr/uhad187 |
[19] |
Chen C, Wu Y, Li J, Wang X, Zeng Z, et al. 2023. TBtools-II: a "one for all, all for one" bioinformatics platform for biological big-data mining. Molecular Plant 16:1733−42 doi: 10.1016/j.molp.2023.09.010 |
[20] |
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, et al. 2009. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research 37:W202−W208 doi: 10.1093/nar/gkp335 |
[21] |
Clamp M, Cuff J, Searle SM, Barton GJ. 2004. The Jalview Java alignment editor. Bioinformatics 20:426−27 doi: 10.1093/bioinformatics/btg430 |
[22] |
Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, et al. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research 30:325−27 doi: 10.1093/nar/30.1.325 |
[23] |
Tamura K, Stecher G, Kumar S. 2021. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution 38:3022−27 doi: 10.1093/molbev/msab120 |
[24] |
Jin Y, Liu F, Huang W, Sun Q, Huang X. 2019. Identification of reliable reference genes for qRT-PCR in the ephemeral plant Arabidopsis pumila based on full-length transcriptome data. Scientific Reports 9:8408 doi: 10.1038/s41598-019-44849-1 |
[25] |
Yu J, Yang X, Wang Q, Gao L, Yang Y, et al. 2018. Efficient virus-induced gene silencing in Brassica rapa using a turnip yellow mosaic virus vector. Biologia Plantarum 62:826−34 doi: 10.1007/s10535-018-0803-6 |
[26] |
Wang H, Zong C, Bai A, Yuan S, Li Y, et al. 2022. Transcriptome sequencing and gas chromatography–mass spectrometry analyses provide insights into β-caryophyllene biosynthesis in Brassica campestris. Food Chemistry: Molecular Sciences 5:100129 doi: 10.1016/j.fochms.2022.100129 |
[27] |
Hong G, Xue X, Mao Y, Wang L, Chen X. 2012. Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. The Plant Cell 24:2635−48 doi: 10.1105/tpc.112.098749 |
[28] |
Altaf-Ul-Amin M, Katsuragi T, Sato T, Kanaya S. 2015. A glimpse to background and characteristics of major molecular biological networks. BioMed Research International 2015:540297 doi: 10.1155/2015/540297 |
[29] |
Hu Y, Jiang L, Wang F, Yu D. 2013. Jasmonate regulates the INDUCER OF CBF EXPRESSION–C-REPEAT BINDING FACTOR/DRE BINDING FACTOR1 cascade and freezing tolerance in Arabidopsis. The Plant Cell 25:2907−24 doi: 10.1105/tpc.113.112631 |
[30] |
Ju L, Jing Y, Shi P, Liu J, Chen J, et al. 2019. JAZ proteins modulate seed germination through interaction with ABI5 in bread wheat and Arabidopsis. New Phytologist 223:246−60 doi: 10.1111/nph.15757 |
[31] |
Zhai Q, Zhang X, Wu F, Feng H, Deng L, et al. 2015. Transcriptional mechanism of jasmonate receptor COI1-mediated delay of flowering time in Arabidopsis. The Plant Cell 27:2814−28 doi: 10.1105/tpc.15.00619 |
[32] |
Kazan K, Manners JM. 2012. JAZ repressors and the orchestration of phytohormone crosstalk. Trends in Plant Science 17:22−31 doi: 10.1016/j.tplants.2011.10.006 |
[33] |
Ye H, Du H, Tang N, Li X, Xiong L. 2009. Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice. Plant Molecular Biology 71:291−305 doi: 10.1007/s11103-009-9524-8 |
[34] |
Han Y, Luthe D. 2021. Identification and evolution analysis of the JAZ gene family in maize. BMC Genomics 22:256 doi: 10.1186/s12864-021-07522-4 |
[35] |
Liu X, Zhao C, Yang L, Zhang Y, Wang Y, et al. 2020. Genome-wide identification, expression profile of the TIFY gene family in Brassica oleracea var. capitata, and their divergent response to various pathogen infections and phytohormone treatments. Genes 11:127 doi: 10.3390/genes11020127 |
[36] |
He X, Kang Y, Li W, Liu W, Xie P, et al. 2020. Genome-wide identification and functional analysis of the TIFY gene family in the response to multiple stresses in Brassica napus L. BMC Genomics 21:736 doi: 10.1186/s12864-020-07128-2 |
[37] |
Wang Y, Li N, Zhan J, Wang X, Zhou X, et al. 2022. Genome-wide analysis of the JAZ subfamily of transcription factors and functional verification of BnC08.JAZ1-1 in Brassica napus. Biotechnology for Biofuels and Bioproducts 15:93 doi: 10.1186/s13068-022-02192-0 |
[38] |
Saha G, Park JI, Kayum MA, Nou IS. 2016. A genome-wide analysis reveals stress and hormone responsive patterns of TIFY family genes in Brassica rapa. Frontiers in Plant Science 7:936 doi: 10.3389/fpls.2016.00936 |
[39] |
Zhang X, Li L, He Y, Lang Z, Zhao Y, et al. 2023. The CsHSFA-CsJAZ6 module-mediated high temperature regulates flavonoid metabolism in Camellia sinensis. Plant, Cell & Environment 46:2401−18 doi: 10.1111/pce.14610 |
[40] |
Cao R, Lv B, Shao S, Zhao Y, Yang M, et al. 2024. The SmMYC2–SmMYB36 complex is involved in methyl jasmonate-mediated tanshinones biosynthesis in Salvia miltiorrhiza. The Plant Journal 119:746−61 doi: 10.1111/tpj.16793 |
[41] |
Bai M, Fan M, Oh E, Wang Z. 2012. A triple helix-loop-helix/basic helix-loop-helix cascade controls cell elongation downstream of multiple hormonal and environmental signaling pathways in Arabidopsis. The Plant Cell 24:4917−29 doi: 10.1105/tpc.112.105163 |
[42] |
Park J, Lee S, Park G, Cho H, Choi D, et al. 2021. CYTOKININ-RESPONSIVE GROWTH REGULATOR regulates cell expansion and cytokinin-mediated cell cycle progression. Plant Physiology 186:1734−46 doi: 10.1093/plphys/kiab180 |
[43] |
Huai J, Gao N, Yao Y, Du Y, Guo Q, et al. 2024. JASMONATE ZIM-domain protein 3 regulates photomorphogenesis and thermomorphogenesis through inhibiting PIF4 in Arabidopsis. Plant Physiology 195:2274−88 doi: 10.1093/plphys/kiae143 |
[44] |
Toledo-Ortiz G, Huq E, Quail PH. 2003. The Arabidopsis basic/helix-loop-helix transcription factor family. The Plant Cell 15:1749−70 doi: 10.1105/tpc.013839 |